

Green Quality Dialogue

Bonn, Germany November 4th, 2016

Introduction to IRENA

- The Intergovernmental Organisation focused on renewable energy
- 149 members countries (including EU) and 27 in process of accession

2015: a record year for renewables

- 47 GW PV, 63 GW wind power installed more than 25% growth from the previous year
 - More than half of all new power generation worldwide is renewable
 - Despite low fossil fuel prices
- USD 360 bln investments (USD 330 bln for power)
- Cost continue to fall
 - Solar PV USD 30-48/MWh in Dubai, Mexico, Peru
 - Wind USD 30-37.5/MWh in Morocco and Peru
- 164 countries with RE policies in place
- The global energy transition is ongoing

Renewables investments have overtaken non-renewables

Growth in power technologies

Power generation capacity (GW installed by 2030)

Source: IRENA Remap 2016

Cost of renewable power will continue to fall

	Global weighted average data								
	Investment costs (2015 USD/kW)		Percent change	Capacity factor		Percent change ²	LCOE (2015 USD/kWh)		Percent change
	2015	2025		2015	2025		2015	2025	
Solar PV	1 810	790	-57%	18%	19%	8%	0.13	0.06	-59%
CSP (PTC: parabolic trough collector)	5 550	3 700	-33%	41%	45%	8.4%	0.15 -0.19	0.09 -0.12	-37%
CSP (ST: solar tower)	5 700	3 600	-37%	46%	49%	7.6%	0.15 -0.19	0.08 -0.11	-43%
Onshore wind	1 560	1 370	-12%	27%	30%	11%	0.07	0.05	-26%
Offshore wind	4 650	3 950	-15%	43%	45%	4%	0.18	0.12	-35%

Renewable power generation cost will continue to fall: -26% to -59% by 2025

Renewable power investments per technology

Global Trends in Renewable Energy Investment 2016

Source: Frankfurt School-UNEP Centre/Bloomberg New Energy Finance (2016), Global Trends in Renewable Energy Investment.

Note: Investment volume adjusts for re-invested equity. Total values include estimates for undisclosed deals.

2015: 286 USD billion. Solar PV and wind leading

Accelerating investments in renewables

A continued growth of renewable energy investments is needed: **USD 770 billion per year** for 2016-2030

Source: IRENA Remap 2016

LATAM – Energy mix

Fossil-based economy

LATAM – RE power capacity

Wind is rapidly progressing, followed by PV

Complementarity Hydro & VRE - Uruguay

LATAM – Investments by country

Brazil continues to lead Mexico, Chile and Uruguay accelerating

LATAM – Investments by technology

Wind and solar have taken from biofuels the lead in investment

Market opportunities

The top five countries make up more than **half** of renewable energy use in 2030; the next five bring this to nearly two-thirds.

Prices of utility-scale solar PV in key markets

Risks associated to the observed prices?

Risk management for new technologies

The Netherlands' offshore status & policy

Nurturing rapidly growing RE markets

Which **instruments** do we have to mitigate technical risk, attract investment and public acceptance, and meet expectations by all stakeholders in a USD trillion market?

International standards and conformity assessment schemes

Implementation requires a Quality Infrastructure

Source: Physikalisch-Technische Bundesanstalt

Impact of standards and CA on RE markets

It is crucial to engage private sector as well as policy-makers and regulators.

Where is the evidence of the impact of standards and CA? **Example:** Higher PV plant outputs due to performance measurements

Testing not included in EPC contract

100 MW plant*: +/- 12 million USD in 25 years

223 GW globally*: +/- 1 billion USD/year

Testing included in Engineering, Procurement and Construction (EPC) contract

* CF: 15% | Tariff: 0.12 USD/kWh

International standards for grid integration

- International standards: Platform of discussion on good practices
- Compliance with codes: Quality infrastructure for electro-technical sector

Standard	Function	Content
IEC 60617	Terminology	Graphical symbols for diagrams
IEC 60034	Product specifications	Rotating electrical machinery
IEC 60044	Product specifications	Instrument transformers
IEC 60045	Product specifications	Steam turbines
IEC 60076	Product specifications	Power transformers
IEC 60143	Product specifications	Series capacitors for power systems
IEC 60186	Product specifications	Voltage transformers
IEC 60308	Product specifications	Hydraulic turbines
IEC 60358	Product specifications	Coupling capacitors
IEC 60521	Product specifications	AC watt metres
IEC 60687	Product specifications	Static watt metres
IEC 60905	Product specifications	PV devices
IEC 61194	Product specifications	Characteristic parameters of stand-alone PV systems
IEC 61277	Product specifications	Terrestrial PV systems
IEC 61400	Product specifications	Wind turbine design
IEC 61868	Product specifications	Insulating mineral oils
IEC 62052	Product specifications	Electricity metering equipment
IEEE 1094	Product specifications	Wind farm design and operation
IEEE 112	Product specifications	Induction motors
IEEE 115	Product specifications	Synchronous machines
IEEE 421	Product specifications	Synchronous machines
IEEE 929	Product specifications	Solar PV

IRENA web platform for RE standards and patents: www.irena.org/inspire

- List of standards
- Includes abstracts, normative references
- Organisation developing the standard and the hyperlinks

E.g. Standards for PV Systems

Supporting countries to develop and implement QI for RET

- Interactive web tool on RET standards: <u>www.irena.org/inspire</u>
- Studies on QI for solar thermal, small wind. Forthcoming PV
- Grid integration: grid connection codes
- Workshops with policy-makers and regulators
- Expanding cooperation with PTB, IEC and IECRE, and others

Assistance to countries

Workshop – Developing quality infrastructure for solar water heating systems in LAC

PTB LAC Project – IRENA - ICE

Planning and Technical Standards Development for China's Renewables

IRENA – CREEI – IEC - IECRE

Thank you

We are collecting illustrative cases on the impact of standards and CA on RE markets.

Interested in sharing your case?

Please contact: Francisco Boshell (<u>Fboshell@irena.org</u>) Alessandra Salgado (<u>Asalgado@irena.org</u>) Simon Heisig (<u>Sheisig@irena.org</u>)

Back Up

Grid integration of VRE

Current and future VRE share in annual generation G20 Countries

