

SolarWorld AG Romy Acosta

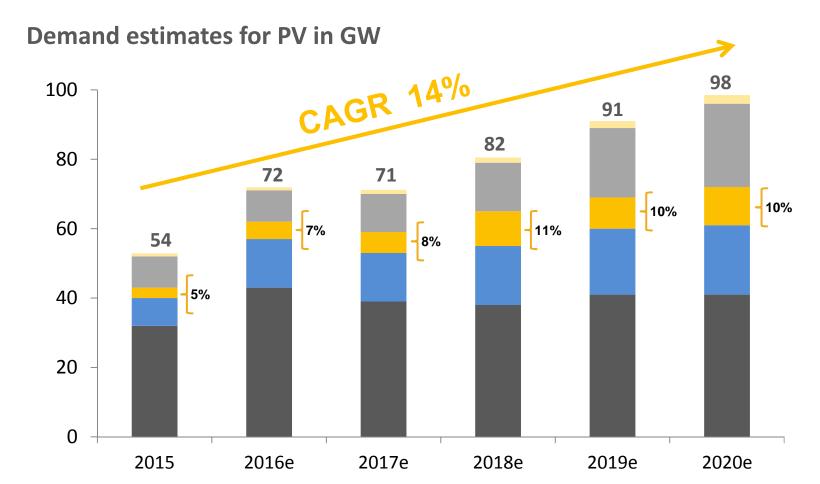
4. November 2016

Quality Challenges for Solar Markets

Green Quality Dialogue – Bonn

SolarWorld at a glance

	REALVALUE
Location	 Headquarters in Bonn/Germany Production in Freiberg/Germany, Arnstadt/Germany and in Hillsboro/U.S. Sales offices in Germany, U.S., France, Italy, UK, South Africa, Singapore and Japan
Established/ IPO	 Established in 1998 IPO in 1999 (Düsseldorf Stock Exchange) listed on the Prime Standard of the Frankfurt Stock Exchange since 2003
Market position	 Global producer of high quality crystalline solar solutions with a strong brand Leading manufacturer of PERC technology worldwide Vertically integrated production in Germany and the U.S. Broad customer base in quality segment (B2B partner installer networks in Europe and the U.S.)
Nameplate capacities	 1,500 MW ingots 1,500 MW wafers 1,500 MW cells 1,500 MW modules
Shipments	 Shipments 3Q 2016: 1,027 MW Revenue 3Q 2016: € 639m U.S.: 52% ■ Germany: 15% Europe (w/o GER): 21% ■ ROW: 12%
Employees	3,073 employees (as at September 30, 2016)



MARKET ENVIRONMENT

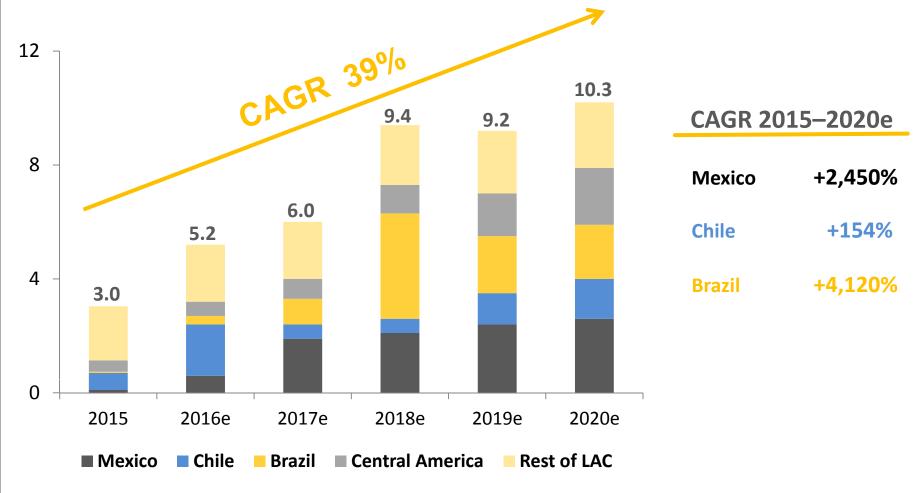
Global solar market development

LAC

■ MENA

■ North America

Source: Deutsche Bank, October 2016


Australia

Asia

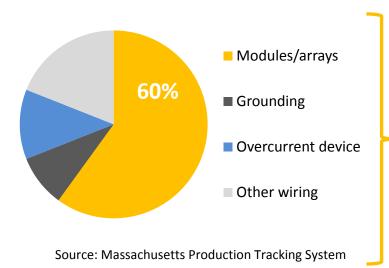
Development in Latin America and Caribbean

Demand estimates for PV in GW

Source: Deutsche Bank, October 2016

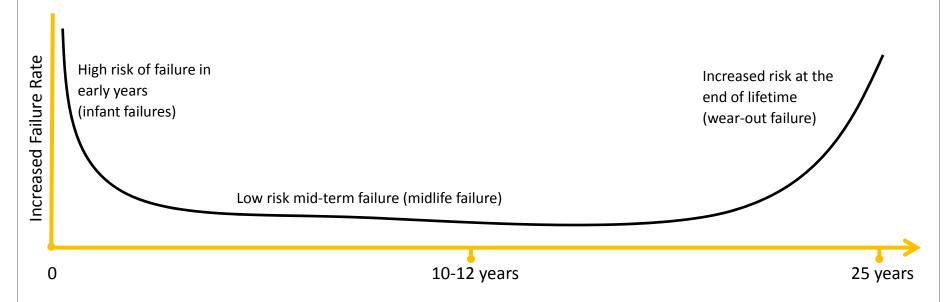
QUALITY CHALLENGES

Equipment selection – why is QA important?

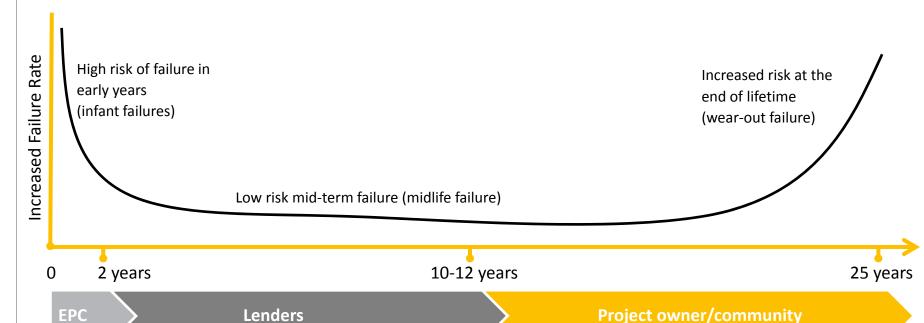


- High maintenance costs
- Unscheduled downtime

Threats to project financials!


- 60% of unscheduled PV plant repairs are related to equipment selection
- Maintenance has little effect on the degradation rate/yield/lifetime of modules
- Module performance is predominantly dependent on:
 - ✓ Module technical characteristics
 - Quality of manufacturing facility
 - Manufacturing process
 - Quality of materials used
 - ✓ Testing procedures

PV plant risk allocation (1)


- PV modules typically account for about 50% of total system costs for a PV power plant
- When calculating energy yield of PV plants, modules are expected to last more than 25 years

BUT: PV modules typically have a bath-tub failure curve

PV plant risk allocation (2)

Lenders' perspective: revenues only important during first 10-15 years

- Risk of infant failures are passed to EPC
- Bankability assessments further minimize risks of midlife failure
 - ✓ Track record of company and modules
 - ✓ Valid renown certifications
 - ✓ Quality of manufacturing facility
 - ✓ Warranty conditions

Owner/community carry risk burden of wear-out-failure ahead of time!

9

Environmental impact of low quality PV

Energy balance/Payback

Energy consumed during production

Energy used compensation

Positive energy balance → F

energy 'uced during PV plant lifetime

Carbon Footprint/Payback

Emissions during production

Emissions compensation

Positive climate impact - ssions addivisources of energy and improve

y avoided by substituting GHG-intensive during PV plant lifetime

Start

25 years

Increased waste

Rule of thumb: 1 MW of solar PV = 100 tons

In Germany: Current installed capacity is 40 GW = 4 million tons

app. 1% failure = 400,000 t/a to be disposed

Low failure rates only possible with good QA/QI — The higher the failure rate, the higher the amount of waste.

Advantages of QA/QI

YES NO **Product quality influences** Price becomes main factor equipment selection, too. for equipment selection. **Quality requirements encourage** Low price discourages investment investment in testing, certification in testing, certification and quality control. and quality control. Manufacturers who use quality materials Manufacturers with low quality materials and conduct thorough product tests and production processes are rewarded by market. have cost advantages.

Low quality products are screened out of the market. PV plants reach expected lifetime of +25 years. Energy yield and CO_{2eq} savings are high. Costs of operation and maintenance are low. Investments and incentives have good ROI. Technology improvements increase.

Low quality pushes good quality out of the market.

PV plants fail prematurely.

Energy yield and CO_{2eq} savings are low.

Costs of operation and maintenance rise.

Investments and incentives are wasted.

Technology improvements stall.

Furthering common interests

Start as you mean to go on

IMPORTANT: Policy makers, owner and community should think long-term!

lowest module costs ≠ lowest LCOE

Policy makers should **put incentive mechanisms in place that**:

- encourage long-term benefits
- protect the interests of the community
- reduce investment risks for owners/community
- increase market attractiveness for serious manufacturers
- minimize environmental impact and reduce waste
- help avoid market failure

THANK YOU

FOR YOUR ATTENTION

Romy Acosta

Head of Investor Relations SolarWorld AG

Tel.: +49 228/55920-476

E-Mail: romy.acosta@solarworld.com