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DLR activities in energy scenario development and A#y
assessment DLR

= Studies on the energy transition and green hydrogen supply since the 1970s,
e.g. book ,Hydrogen as an Energy Carrier” from Winter/Nitsch of 1988 (Springer)

» | ead scenarios for the German Ministry for the Environment starting around 2000,
e.g. German ,Long term scenarios 2012“ with a first bottom-up outlook on 95% GHG reduction

= Development of global and country scenarios for NGOs since 2005,
e.g. Teske et al. 2019 ,Achieving the Paris Climate Agreement Goals..."

= |nfrastructure modelling in high temporal and spatial resolution since around 2005 (REMix model)

» Research on methods for socio-technical scenarios, agent-based market analyses, prospective
LCA-based assessment and analysis of critical resource demand, resilience, RE potentials,
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Various technological options for future energy systems
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Solar PV and wind electricity generation in TWh/yr in global 100% RE scenarios in the year 2050

Source: Breyer et al (2022)
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Which target system iIs to be preferred depends on
numerous parameters, which can be weighted differently DLR
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100% renewable energy power supply systems:
Example of cost optimization (1) vs. diversity approach (2) DLR

Teske et al. 2019 scenarios (2) with 40,000

diverse power generation structure
from storyline & simulation approach: |
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= Higher security of supply through
technological diversity
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= Consideration of technology accep- 15,000

tance and thus lower societal risks 10,000

» Parallel expansion of technologies 5,000
offers broader economic opportunities

= Possible co-benefits of esp. CSP*
(heat use, water desalination)

o
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= Compared to optimized LUT scenarios
(1), LCOE** are 10% to 20% higher.

* Concentrating Solar Power
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Europe in detail: diversity of supply reduces risks and
Increases resilience at comparably low additional cost DLR

= Power supply diversity favorable in many regards
= 2050 system cost for Europe 3-6% higher if no technology supplies more than 40%
» Reduced vulnerability towards external stress cases (extreme weather, hacker attacks)

= Diversity in 100% RE power systems mostly through CSP and offshore technologies
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Energy scenarios pay too little attention to risks A#y
assoclated with costs and availability of scarce materials DLR
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Role of material recycling and tradeoffs between costs A#y
DLR

and resource usage must be further explored
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» Consideration of a criticality index in multi-objective system optimization
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= Better data on resource availability and demands in future energy and transport systems and beyond?

» Uncertainties with regard to future recycling/circulation potentials and substitution possibilities
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Tradeoff between implementation of a zero-emissions system

and negative emissions need to be explored in more detalil DLR
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= This contrasts with uncertain costs
for CDR and CCS

» Conclusive assessment requires
comprehensive consideration of
infrastructure costs for RE, fossil
fuel use, and negative emissions
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Consideration of a highly stylized power system for central Europe, adopted from Gils et al. (2022).
The relative numbers provide an estimate of the additional costs of further increasing the RE share.
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Import strategies will be important part of the solution for

Infrastructure development

many countries: example net-zero scenario for Germany DLR
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Primary energy supply in the Net-zero scenario for Germany according to Simon et al. (2022).
Total (theoretical) green electricity demand in this high-efficient scenario reaches 1500 TWh in 2050,
of which more than 500 TWh are imported as power, H, or e-fuels. CDR measures are assumed for the last ~5% CO, reduction.
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While there is some flexibility in the regional use of RE,
robust investments can be seen in different scenarios

b) ) } a)

= Decision on import strategy has high impact on
RE allocation

= Repurposing CH, pipelines is no-regret option
= H, flows depending on scenario storyline
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Use of decentralized flexibility lowers supply costs and
reduces the need for transport networks DLR
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Decentralized power system flexibility is

competitive and not displaced by large-scale Incentives for the installation and operation of

grid expansion and hydrogen production decentralized flexibility technologies required
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Conclusions ‘#7
DLR

= Diversity of supply reduces risks and increases resilience at comparably low
additional cost

» Tradeoff between implementation of a zero-emissions system and negative
emissions need to be explored in more detalil

* Energy scenarios pay too little attention to risks associated with costs and
availability of scarce materials

* Role of material recycling and tradeoffs between costs and resource usage must be
further explored

» Import strategies will be important part of the solution for many countries

= While there is some flexibility in the regional use of RE, robust investments can be
seen in different scenarios

» Use of decentralized flexibility lowers supply costs and reduces the need for
transport networks
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