

Relevance of long-term power system planning towards high shares of RES

Insights into the German Energiewende

Dennis Volk

SEE Grid Integration Workshop - 7 Nov 18, Vienna

Renewables in the German power system

German Energiewende a long-term project; built on top a "mature system"; > 50% of generation under planned conditions

Two main questions

How did we get to where we are today?

Where could we go from here?

Planning measures used in the past; remain significant in the future

How did we get to where we are today?

- Planning measures already in use
 - why they help,
 - how they are designed.

RES target setting

- RES targets as cornerstone for development (IRENA, 2015)
 - spectrum,
 - sector(s),
 - design methodology.
- German RES targets
 - legally binding for electricity as target share,
 - non technology-specific,
 - anchor for "further measures".

German RES targets effective in combination w govt. investment guidance

Development of German RES electricity target

RES targets growing w confidence; works w updates; "easy" so far

Further measures – German energy plans

- "Energiekonzept" @ 20%RES (BMWi, 2010)
 - Long-term energy/climate policy guidelines,
 - Scenarios to identify pathways for power, heat, transport,
 - RES as main energy source,
 - Energy efficiency, grids.
- Aiming towards market-based RES and larger shares
 - Reduced financial support,
 - Produce when required,
 - Provision of ancillary services.
- Incremental development since then; comprehensive revision possible

Whole-of-system plans as checkpoints for policy adjustments

The role of German government in electricity sector investment (beyong generation)

Govt. Investment planning in Germany roughly along the lines of competitive market design structures

Transmission investment planning – results

German electricity sector investment planning

transmission expansion

Grid planning process established in 2011 (@ 24% RES share) as response to growing needs

Transmission investment planning – institutional and design aspects

Transmission planning follows a comprehensive approach (IRENA, 2018)

Process delivers transparent, least-cost, policy-adjusted transmission plan to achieve timely and efficient infrastructure

Transmission investment planning – key factors

- RES capacity growing significantly in all scenarios
- Large RES bandwidth induces uncertainty
- Conventionals decline slowly
- Low uncertainty largely driven by retirement decisions

- Sector coupling as "new" feature to the scenarios
- Decentralisation above 50% in all scenarios
- Large bandwidth driven by RES
- Demand flexibility @17% max; harder to reach in the market,

Data source: BNetzA (2011ff)

And without the grid?

- Security constraints more often binding
 - Redispatch (11 TWh and 220mEUR)
 - Renewables curtailment (82mEUR; 314; 643)

13

Regulators role along the IRENA planning scope

Power sector planning: Planning scopes for techno-economic analysis

Generation expans, Scenario-based

- Utility

Geo-spatial planning

- **TSO**

Where could we go from here?

- Enhanced transmission planning
 - stability assessments,
 - automated network operation,
 - storage for grid services,
 - other complements to the grid
- Distribution level planning
- Generation planning
 - nation-wide adequacy and flexibility
- Energy sector planning

Thank you for your attention!

Dennis Volk

www.bundesnetzagentur.de

www.netzausbau.de

dennis.volk@bnetza.de

References

- Bund (2000): "Erneuerbare-Energien-Gesetz 2000" available at https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl100s0305.pdf https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl100s0305.pdf https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl100s0305.pdf https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl100s0305.pdf <a href="https://www.bgbl.de/xaver/bgbl-de/xaver
- Bund (2004): "Erneuerbare-Energien-Gesetz 2004" available at https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl100s0305.pdf#_bgbl_%2F%2F*%5B%40attr_id%3D%27bgbl104s1918.pdf%27%5D_1541412547770
- Bund (2008): "Erneuerbare-Energien-Gesetz 2008" available at https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl108s2074.pdf%27%5D_1541412708984
- Bund (2014): "Erneuerbare-Energien-Gesetz 2014" available at https://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl114 s1066.pdf bgbl %2F%2F*%5B%40attr id%3D%27bgbl114s1066.pdf%27%5D 15414 13056360
- BNetzA (2011ff): "Scenario Outlook" available at https://www.netzausbau.de/bedarfsermittlung/de.html
- BNetzA (2017): "Monitoringreport 2017" available at https://www.bundesnetzagentur.de/SharedDocs/Downloads/EN/Areas/ElectricityGas/CollectionCompanySpecificData/Monitoring/MonitoringReport2017.pdf?__blob=publicationFile&v=2
- Bund (2018): "Koalitionsvertrag CDU, CSU und SPD" available at https://www.cdu.de/system/tdf/media/dokumente/koalitionsvertrag_2018.pdf?file=1

References

- BMWi (2010): "Energiekonzept der Bundesregierung" available at https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=3
- IRENA (2015): "Renewable Energy Target Setting", available at http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_RE_Target_Setting_2015.pdf
- IRENA (2018): "Insights on Planning for Power System Regulators", available at http://www.irena.org/publications/2018/Jun/Insights-on-planning-for-power-system-regulators

Why grid expansion?

The big north-south divide of generation and load results in challenges for the transmission grid.

Source: BNetzA

The TSOs set the extent of the network expansion by applying the NOVA-principle.

Grid... Topology measure optimization Transmission line monitoring Voltage increase strengthening New lines in existing corridors New 380 kV-lines extension New substations

Source: BNetzA

Check criteria for projects

Based on different check criteria the BNetzA analyses the projects.

Effectiveness (n-1)

Does the project resolve or reduce an overload?

Necessity

Does the use of capacity of the new project is at least 20%?

Other considerations

Are there special reasons to justify the confirmation or disaffirmation of a project?

Current status of grid expansion

Projects of Federal Requirements Plan (BBPG)

Projects of Power Grid Expansion Act (EnLAG)

allowed /
under construction

Planning approval

Federal sectoral planning

Not yet in approval procedure

Transmission system

The NEP contains a method for the allocation of producers of renewable energy and the loads.

RES distribution - NEP 2024

Allocation of:

- Renewable Energies
- conventional power plants
- loads

to one of approximately 450 nodes of the transmission network.

The electricity market is simulated for every hour of the target year.

Approach:

- Internal network is "copper plate"
- Economical priority of Renewable Energies
- Must-run plants
- Load, that cannot be served by Renewables, is covered by conventional power plants

Result:

- Hourly forecast of the power plant utilization
- Hourly load and feed-in for every node

The (n-1)-security is considered by outage calculations using a calculation software.

Verification of maximum capacity utilization

Maximum capacity utilization > 20%

Necessity confirmed

Other considerations

(n-1)-secure means, that with ONE line failure the grid can still work safely and reliably.

Further reasons for the efficiency of a project are, that the project...

- avoids disproportional effort for establishing (n-1)-security in subordinate grids
- leads to an intended increase of transport capacity across borders
- reduces undesired loop-flows over foreign countries significantly

Step 3: Federal Requirements Plan

Federal Requirements Plan ("BBP")

- Projects in the Federal Requirements Plan are necessary for the energy system and have "priority need" for implementation
- The Federal Requirements Plan defines start and end point of each project
- Legal Basis for the next steps: the planning of corridors and final routes
- The law was passed in 2009
- The first Federal Requirements Plan was issued in 2013 on the basis of the NEP 2012

Federal Sectoral Planning:

- Definition of corridors which have the least impact on people and environment
- Strategic Environmental assessment
- Cross-border projects: BNetzA (NABEG) is responsible

Source: BNetzA

Planning approval:

- Final decision on the route (location of masts etc.)
- Environmental assessment
- Cross-border projects: BNetzA (NABEG) is responsible

Investments and expenditures in grid infrastructure by the TSOs

Source: BNetzA

Electricity tariff for private customers

Aufteilung der Einzelpreisbestandteile für Haushaltskunden für das Abnahmeband zwischen 2.500 kWh und 5.000 kWh (DC) im Jahr für Ökostrom, Preisstand 1. April 2017

in Prozent

