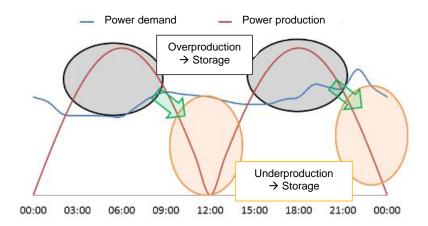


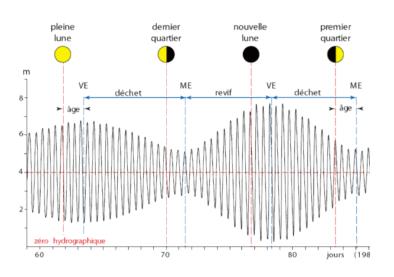
sabe a

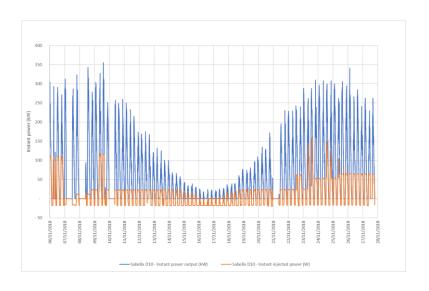
Scope & stakeholders

- → Innovative initiative aiming to develop the **Philippines' and the ASEAN region's first commercial ocean power plant** deploying **tidal in-stream turbines** in San Bernardino Strait
- → Development by H&WB and SABELLA, MoU with PNOC RC
- → 1.5 MW ocean power plant off Capul island, on one of the 3 concession areas granted by the Philippine Department of Energy in 2013 to H&WB
- → 3 x D18-1000 turbines connected to the grid through 3 export cables



How tidal energy can become the baseload of the grid?


- → Both long-term and short-term variability in power production handled by an energy storage system (onshore batteries)
- → Improve grid stability and demand-supply balance



How tidal energy can become the baseload of the grid?

→ Ongoing study to couple the baseload provided by the tidal turbines (predictable) with the power production of other renewable energy sources (e.g. solar or wind)

Scope & stakeholders

Municipality of Capul:

- 12 barangays
- 14,000 residents
- Richly endowed with fisheries and aquatic resources
- But does not have enough electricity for the town to thrive
- Off-grid network
- Peak demand in 2018: 300 kW
- Powered by polluting and costly Diesel generators

3 x D18-1000 turbines

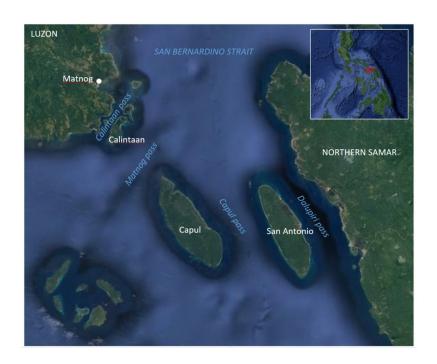
- 18m rotor diameter, 1000 kW rated power
- Power production: 2.8 GWh/year

Solar PV

Ongoing studies

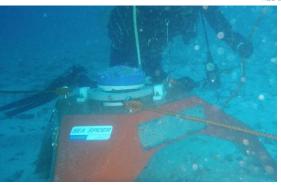
Energy storage system

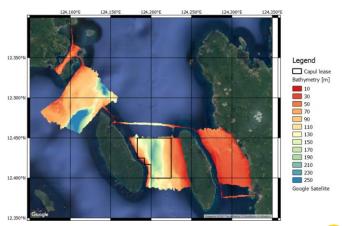
Battery Lithium-Ion, capacity TBD



Location: San Bernardino Strait

- → Four channels separating the islands of Luzon, Calintaan, Capul, San Antonio and Samar
- → Strong influence from the Indonesian Throughflow
- → Semidiurnal with a diurnal inequality tidal regime
- → Current speeds over 3 m/s during spring tides


RESOURCE ASSESSMENT


In situ measurements

- → Preliminary resource characterization study (2015)
- → ADCP deployments (2015) in the three concession areas
- → High-resolution bathymetric survey (2016) in the four passes, using a Multi-Beam Echosounder

Necessary inputs for the numerical model and the site selection for the 1st phase of the project

RESOURCE ASSESSMENT

sabe a

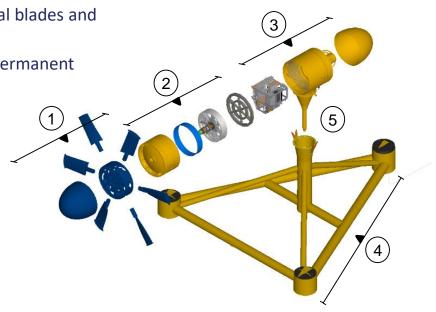
Lay-out

- → Selection of Capul based on the energy density and technico-economical criteria
- → Criteria used for the lay-out :
 - Bathymetric limits
 - Flatness of the seabed
 - Minimum axial and longitudinal spacing
 - Landfall constraints

PRELIMINARY FRONT-END ENGINEERING

Fundamental technological principles & tidal power plant architecture

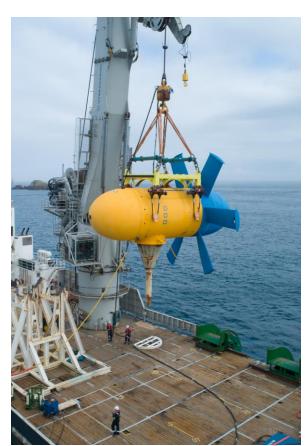
→ Simplicity & Ruggedness: referent choices


 Horizontal axis rotor with fixed symmetrical blades and no yaw drive

2. Direct drive synchronous generator with permanent magnets

- 3. In-board conversion / transformation
- 4. Gravity-based tripod foundation
- 5. Modularity

→ Capul power plant architecture


- 18m rotor diameter
- 3 x 1000 kW rated power output
- 3 x 7.5 kV export cables
- PV array and energy storage

UPCOMING PROJECT DEVELOPMENT PHASES

- → Permitting and environmental impact study
- → Financial closing
- → Detailed engineering
- → Procurement
 - Local content: possibility to build some of the subparts locally, like the support structure.
 - Strategic components like the nacelle should be built by suppliers with a previous experience in tidal technology development, so as to benefit from lessons learnt (learning by doing emerging industry)
- → Installation
- → Grid connection / commissioning

Project financing

How to get this pilot project funded?

30% equity – Sabella and H&WB Other prospective partners are being considered (MOU with PNOC-RC in 2016)

70% debt-financing

To be provided by banks, or multilateral institutions ADB, DBP, IRENA-ADFD

TECHNICAL, ECONOMIC, SOCIAL AND ENVIRONMENTAL STAKES

- → **Decarbonization of Capul**: 14,000 islanders powered by a thermal power plant equipped with 4 diesel generators, saving of over 850 tCO2 per year
- → Energy security and cost competitiveness: 24hour reliable electricity supply competitive electricity cost independent from fuel price volatility
- → Economic development: grid-connection of hospital and schools

