IRENA INNOVATION WEEK

Electrifying heating and cooling in buildings

Organised in partnership with

15:30-17:00 | 25 September 2023

IRENA INNOVATION WEEK

Highlights from the Innovation landscape report: Electrification of buildings

Juan Pablo Jiménez Energy Analyst IRENA Innovation and Technology Centre

Heat pumps — The jewel in the crown

Why heat pumps are key for the electrification of buildings?

- High efficiencies
- Use of renewable heat
- Provide heat at temperatures required in buildings
- Reverse mode for the provision of heating and cooling

For all these aspects; prospects for heat pumps are huge

#IIW2023 93

Heat pumps have experienced a rapid cost reduction in the past decade

Heat pump cost trends in the residential and commercial sectors for air-to-air and airto-water systems in **Italy**, 2016-2019

#IIW/2023

IRENA (2022), Renewable solutions in end-uses: Heat pump costs and markets

Heat pumps are experiencing a stunning growth in major markets

- In Europe, heat pumps market increased **34%** between 2021 and 2022
- In 2019, the Chinese market for air-to-water heat pumps saw 1.8 million units sold, up from around 1 million units in 2013. In 2018, 42 million room air conditioners were sold.
- In Japan, already 86% of households have at least one room air-conditioner unit (average 2.4 per household)
- In the US, sales of air source heat pumps reached almost 4 million in 2021, more than twice the 1.75 million sales in 2010

If we want to run heat pumps on green electricity, we cannot simply electrify in any way but pursue a **smart electrification of** the heating and cooling supply and the energy systems as a whole.

What does the smart electrification entail?

Systemic innovation approach across four dimensions

#IIW2023 96

Heat pumps — IRENA's Innovation Landscape Report

- A systemic innovation approach must be at the center of sound smart electrification strategies.
- There is no "one-size-fits-all" solution for smart electrification
- The toolbox includes 100 innovations in that can play a role in transforming and decarbonising the energy use sector with smart electrification strategies

Heat pumps — 35 innovation and toolbox for power-to-heat

Dimension	Category	Innovation	Innovation readiness level	Impact on electrification of end uses	Smart electrification	Dimension	Category	Innovation	Innovation readiness level	impact on electrification of end uses	Smart electrification
TECHNOLOGY AND INFRASTRUCTURE	CONVERSION TECHNOLOGIES	 1 Low-temperature heat pumps 	0000	0000	••••••	MARKET DESIGN AND REGULATION	END-USE SECTOR REGULATION AND INCENTIVES	 19 Building codes for power-to-heat/cooling solutions 	•000		••••••
		 2 Hybrid heat pumps 	0000	0000	•••••						
		 3 High-temperature heat pumps 	•000	0000	••••••			• 20 Streamlining normitting			
		 4 Waste heat-to-power technologies 	0000	•000	••••••			procedures for thermal infrastructures	••••••		●000
		 5 High-temperature electricity-based applications for industry 	•000	0000	•000	SYSTEM PLANNING AND OPERATION	INTEGRATED PLANNING	 21 Holistic planning for cities 	••••	••••	••••••
	THERMAL ENERGY STORAGE	 6 Low-temperature thermal energy storage 	••••	•••••	0000			 22 Heating and cooling maps 	••••	•000	••••••
		 7 Medium- and high- temperature thermal 	••••••					 23 Coupling cooling loads with solar generation 	••••	••••••	0000
	DISTRICT HEATING AND COOLING SYSTEMS	8 Fourth-generation					SMART OPERATION	 24 Smart operation with thermal inertia 	••••••	•000	0000
		district heating and cooling systems	••••		0000			 25 Smart operation with seasonal thermal storage 	••••••	•000	
		heating and cooling systems	•000	•000	••••			 26 Smart operation of industrial heating 	••••	••••••	
	DIGITALISATION	10 Internet of Things for smart electrification	••••	•000	0000			 27 Combining heating and cooling demand in district systems 	••••••	•000	••••••
		 11 Artificial intelligence for forecasting heating and cooling demands 		••••••	••••	BUSINESS MODELS	SERVICES FOR THE ENERGY SYSTEM	- 28 Aggregators	0000	0000	0000
		12 Blockchain for enabling transactions	••••••	•000	••••••			 29 Distributed energy resources for heating and cooling demand 	••••	••••••	
		 13 Digitalisation as a flexibility enabler 	••••••		0000			 30 Heating and cooling as a service 	••••	••••••	••••
MARKET DESIGN AND REGULATION	ELECTRICITY MARKET DESIGN	14 Dynamic tariffs			0000		WASTE HEAT RECOVERY MODELS	 31 Waste heat recovery from data centres 	0000	••••••	0000
		 15 Flexibility through thermal loads 	••••	••000	••••			 32 Eco-industrial parks and waste heat 	••••	•000	••••••
		 16 Flexible power purchase agreement 	••••••	••00	••••			processes			
	END-USE SECTOR REGULATION AND INCENTIVES	 17 Standards and certifications for improved predictability 	••••		•000			 35 Circular energy rlows in cities – booster heat pumps 34 Community support 	••••	•000	••••
		of heat pump operation 18 Energy efficiency					ENERGY COMMUNITIES	district heating and cooling	••••	•000	••••••
		programmes for buildings and industries	0000	••••••	••••			 35 Community-owned power-to-heat assets 	••••••	••••••	
						•	Very high	600 0 High 60 00	Medium 😑	CCC Low	

#IIW2023 98

IRENA (2023), Innovation landscape for smart electrification: Decarbonising end-use sectors with renewable power. Pages 98 — 103 #IIW2023

99

ESSENTIAL KIT

IRENA (2023), Innovation landscape for smart electrification: Decarbonising end-use sectors with renewable power. Pages 98 - 103 #11W2023

COOLING KIT

101

IRENA (2023), Innovation landscape for smart electrification: Decarbonising end-use sectors with renewable power.

IRENA (2023), Innovation landscape for smart electrification: Decarbonising end-use sectors with renewable power. Pages 98 — 103 #IIW2023

103

Bring together innovative experiences and market knowledge that can help integrate more and more heat pumps in the energy system without compromising the power system from a systemic approach.

IRENA INNOVATION WEEK

Accelerated deployment of heat pumps to achieve Japan's net-zero 2050 commitment (Policy, Market & R&D)

Yoichi Fujita Technical Researcher <u>New Energy and Industrial Technology</u> <u>Development Organization (NEDO)</u>

About NEDO

New Energy and Industrial Technology Development Organization (NEDO)

Business details

NEDO is one of the largest public R&D management organizations in Japan.
 NEDO is promoting and supporting R&D projects and integrating the combined efforts of industry, academia and government.

Minister in Charge

•Ministry of Economy, Trade and Industry

Staff

•1,464 as of 2023/4/1

FY 2022 Budget (1.28 billion USD)

Energy Systems: 472 million USD Energy Conservation and Environment: 341 million USD Industrial Technology: 350 million USD New Industry Creation and Discovery of Technology Seeds: 57 million USD

Population : **124.77 million** (**92%** in urban areas) Households : **53.33 million** (1/2/3/4/>5 pers.: 35%/28%/18%/13%/7%)

Japan - Overview

: **378,000 km²** (~Germany) Land Area Population Density : **331 people / km²** (~Belgium) Rate of multifamily : 46 %

```
Mean temperature : 15.8℃ (Tokyo) (≃Madrid, Spain)
```


Sapporo

Tokyo 36° N

43°

Policy - Decarbonization

Source

- Japan's commitment: "Climate Actions tow ards net-zero by 2050", MOEJ

- CO2 emissions by sector: "The GHG Emissions Data of Japan", National Institute for

Japan's commitment to Net-Zero by 2050 CO2 emissions by sector (FY1990 - 2020)

Policy - Decarbonization

<u>Source</u>

- Plan for Global Warming Countermeasures: MOEJ (JP)

- The Sixth Strategic Energy Plan: METI (EN, JP)

- Track record: The document of the Central Environment Council, METI (JP)

Plan for Global Warming Countermeasures and the Sixth Strategic Energy Plan

- Quantitative target are set for Industrial HPs and Commercial and Residential HPWHs

Progression rate = (Result 2020 – Result 2013) / (Prospect 2030 - Result 2013)

Commercial and Residential HPWHs are going well but countermeasures are required for Industrial HPS

Policy - Energy

Energy demand by sector

Source

- Energy demand by sector: The document by the METI (P.71) (JP)
- Electricity mix towards 2030: The document by the METI (P.70) (JP)
- Carbon intensity of electricity generation: FY2019 Energy Supply and Demand Report, METI (P.8) (JP)

363 Final energy 334 350 consumption 280程度 (million kloe) 300 Transport Sector 250 **Residential Sector** 200 Commercial Sector Industries Sector 150 100 50 0 2013 2014 2015 2016 2017 2018 2019 2030

Carbon intensity of electricity generation

Electricity mix towards 2030

110

Policy - Energy

Source

省工ス基準達成率

100% 機種名 この製品を1年間使用した場合の目安電気料金 **31.900** PH

のQRコードからご確認ください

- Top Runner Program: Ministry of Economy, Trade and Industry (JP)

- The uniform energy efficiency labels: "Japan's ENERGY 2020", MET

"Top Runner Program"

(Efficiency standards for machinery, equipment and materials)

- 32 items are in scope (as of September 2023).

Air Conditioners, Electric Refrigerators, Electric Freezers, Gas Water Heaters, Oil Water Heaters, Vending Machines, Electric (HP) Water Heaters, Showcases, etc.

"The uniform energy efficiency labels"

(Energy efficiency labeling)

- The evaluation metric of a 41-point scale $(1.0, 1.1, \dots, 5.0)$ are now being used in retail outlets.
- The items mentioned above (except for vending machines and showcases) are covered as of September 2023. 省エネ性能

Policy - Awards

- <u>Source</u> - Efficiency improvement of HPs: <u>Heat Pump and Thermal Storage Technology Center of Japan (HPTCJ)</u> (JP) - Energy Conservation Grand Prize Award: The Energy Conservation Center, Japan (ECCJ)
- Minister of the Environment's Award for Climate Action: MOEJ (JP)

Efficiency has improved due to energy efficiency policies.

Awards are another driver for efficiency improvement

<u>Energy Conservation Grand</u> Prize Award

(Since 1990) awards excellent energy conservation activities and advanced energy conservation products achieved by technological development at private companies, ...

- <u>Minister of the Environment's</u> <u>Award for Climate Action</u>

(Since 1998) awards individuals or groups that have made significant contributions towards preventing global warming

#IIW2023

112

Policy - Subsidies

ource
Subsidy for investments for advanced energy conservation project: <u>Sustainable open Innovation Initiative</u> (JP)
Subsidy for high-efficiency HPs in industrial and commercial sectors: <u>Sustainable open Innovation Initiative</u> (JP)
Subsidy for "Net Zero Energy Buildings" (METI): Sustainable open Innovation Initiative (JP)
Subsidy for "Net Zero Energy Buildings" (MOEJ): Shizuoka Environment Resources Association (JP)

Subsidy for investments for energy conservation projects and equipment 🛌

- A. Advanced equipment (e.g. HP desiccant humidity control, centrifugal chiller, showcase, MVR, etc.)
- B. Custom-made solutions (e.g. specially designed facility, production line, etc.)
- C. Specified equipment (e.g. AC, industrial HP, commercial HPWH, refrigerator, etc.)
- D. Energy management system and service (Specified EM service and EMS needed for the service)

Subsidy for residential high-efficiency DHW heaters

- HPWHs ("EcoCute")
- Hybrid HPWHs
- Residential Fuel Cells ("Ene-Farm")

50,000 JPY (345 EUR*) 50,000 JPY (345 EUR*) 150,000 JPY (1035 EUR*)

* Exchange rate : 145 JPY / 1 EUR

HPWHs

("EcoCute")

Hybrid HPWHs

Ministry of the Environment

Residential Fuel Cells ("Ene-Farm")

Subsidy for "Net Zero Energy Buildings" ≶ METL

High efficiency ACs, water heaters, BEMS, etc. installed for "Net Zero Energy Buildings" projects (<50% energy consumption of the reference building)

Market - Popular Heat pump type in Japan

Residential Room Air Conditioners

Residential HPWHs (Ecocute)

Commercial HPWHs

114

Market - Residential Room Air Conditioners

Market - Commercial Packaged Air Conditioners

- <u>The Japan Reingeration and Air Conditioning Industry Association (JRAIA)</u> (JP)

Market - Residential HPWH (EcoCute)

11

Market - Commercial HPWH

Air to Water

#IIW2023

118

Around 3,000 units annually.

The surge in sales in 2019 might be attributed to the demand for 2021 Summer Olympics held in Tokyo.

R&D - Utilizing Waste Heat (NEDO)

R&D Project on Innovative Thermal Management Materials and Technologies

(FY 2015 - 2022)

- Budget : 6.8 billion USD
- Technology to effectively reduce, recover and reuse untapped thermal energy
- Crosscutting **heat management** technologies
- HPs can play a role in reusing thermal energy (e.g. high temperature HPs, high-efficiency chiller…)

R&D - Utilizing Waste Heat (NEDO)

High-temperature HP

(Alternative to boilers and firing furnaces)

Prototype of Heat Pump

 ◆ REMARK
 •180℃ supply with COP3.5 using unutilized thermal energy around 80℃

•MAYEKAWA MFG. CO., LTD.

Heat Recycle Absorption Chiller

(Driving with low-temperature exhaust heat)

#IIW2023 120

- **Decarbonization:** HPs are seen as one of key technologies to achieving Japan's netzero 2050 commitment. Quantitative targets for 2030 are set for further deployment of IHPs and commercial and residential HPWHs.
- Energy: Cleaner electricity mix including nuclear power is the challenge on the supply side. On the demand side, HP efficiencies have been and will be improving thanks to EE policies like "Top Runner Program" and Awards.
- **Incentives:** Along with a subsidy for IHPs and commercial HPWHs, some subsidies for energy efficiency and ZEB are also applicable to HPs.
- Market: Japan's AC market is stable with slight increase in residential room ACs. We need to further deploy IHPs in line with the government's target.
- **Technology** : R&Ds of such as High-temperature HP and Heat recycle Absorption chiller are being carried out in domestic research projects.

IRENA INNOVATION WEEK

Heat pumps as a commodity in the electric grid of the future

Thomas Nowak Secretary general European Heat Pumps Association

Market growth '10 – '22 | HP stock2022 est.: 19,9 mill. installed

Activating end-user interest and investment

Cost of electricity (ct/kWh_{el})

Cost of gas (ct/kWh_{thermal})

European heat pump markets - status and outlook | IRENA Innovation week | Bonn | 25.10.2023 | Thomas Nowak

From "heat pump accelerator" to "heat pump action plan"

European heat pump markets - status and outlook | IRENA Innovation week | Bonn | 25.10.2023 | Thomas Nowak

200

Members Heat pump manufacturers Component manufacturers National associations Consultants Research & test institutes

22

countries represented

International cooperation CECA, IEA, IEA HPC, IRENA, HPCJ

Vision

In a fully decarbonised Europe, heat-pump technologies are the number one heating and cooling solution, being a core enabler for a renewable, sustainable and smart energy system.

European heat pump markets - status and outlook | IRENA Innovation week | Bonn | 25.10.2023 | Thomas Nowak

#IIW2023

IRENA INNOVATION WEEK

Panel discussion

Moderator

Thomas Nowak European Heat Pump Association

Panellists

Stefan Moser European Commission

Ezzeddine Jradi Emicool

Kazuyoshi Nakano CRIEPI

Matthias Grapow MAN ES

IRENA INNOVATION WEEK

Closing remarks

Thomas Nowak Secretary general European Heat Pumps Association

