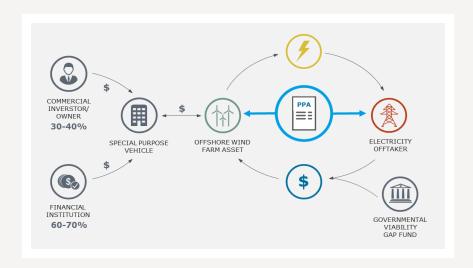


Simon Davies, Senior economist, COWI A/S
Guillaume Mougin, Senior RE engineer, COWI A/S

1 NOVEMBER 2022 DAY 2: FINANCIAL MODELLING OF PPA CONTRACTS AND TARIFF PRICING

Day 2

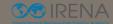
Financial modelling of PPA contracts and tariff pricing


- PPA contract elements: penalties, capacity incentives, curtailment, payment lag and indexation
- Exercises focused on PPA modelling

Recap of Day 1

Recap of Day 1

- WACC
- > NPV
- > LCOE
- > IRR
- > DSCR/DSRA



PPA contracts

PPA tariff

- The price per unit of electricity that the developer requires to engage in the project
- A guarantee of reliable project revenue as a basis for loan financing
- The main but not the only parameter of competition between developers

- A PPA tariff higher than the base tariff in the grid may lead to considerations on public funding such as a VGF
 - Viability Gap Funding can be applied specially for new technologies, demonstration or strategic projects

Committed energy and capacity

- PPA contracts may require the developer to commit to production targets and availability of capacity
- Commitments can have different time resolution
 - Hourly, daily, weekly, monthly, annually
 - Higher resolution means more predictability for the utility but more risk for the developer

- Not meeting committed targets will often be met with penalties
- Commitments of energy and capacity are difficult for nondispatchable technologies

Incentives/Penalties

- PPA contracts will often define a number of penalties for noncompliance
 - Over-/underproduction relative to committed targets
 - Under-delivery relative to committed capacity
 - Delays in commissioning

- A PPA contract can also provide economic incentives
 - Compensation for curtailment
 - Indexing of the PPA tariff

Payment lag

- In some countries, there is a considerable delay from delivery of electricity to payment
- > Puts a considerable strain on the developer's cash flow
- Delaying revenues by as little as a few months will impact key indicators like NPV and IRR
- > The lack of cash flow in the first months of operation may lead to loan financing considerable cash reserves to pay operational costs and service debt

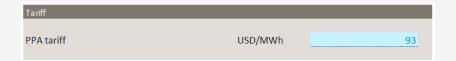
Indexing

- > There is no clear consensus on correcting the PPA tariff for inflation
- Over a potentially 25-year long PPA contract, the lack of indexing can constitute a major loss of revenue
- The developer will require a higher PPA tariff to compensate for the lack of indexing

PPA contract elements in the Excel tool

Contract duration

- The length of the contract will impact project revenues (row 59)
- Technical life can be longer than the contract
 - Price of electricity reverts to base tariff after end of contract
- Loan financing is often tied to the PPA contract
 - Contract duration will likely impact loan tenor



Tariff

- The payment per unit of electricity to the developer (row 64)
- > The PPA tariff is an input
 - BUT: can be estimated by using the calibration/"goal-seek" module in the model

Indexing

- Inflation impact several cost and revenue items (from row 67)
 - OPEX is typically impacted by inflation
 - Base tariff could potentially be impacted by inflation
 - The production tax credit is a revenue and might be indexed
 - The PPA tariff is sometimes partially indexed

	Include	
Inflation rate		3%
Inflation on OPEX	✓ TRUE	
Inflation on base tariff	✓ TRUE	
Indexing of PTC	✓ TRUE	
Indexing of PPA tariff	☐ FALSE	3%
Duration of indexing (years)	***************************************	25

Payment schedule

- Payment lag can have a big impact on project profitability
- Payment lag is denoted in months (row 82)
- Payment lag can be switched on and off by the check box

Curtailment

- The Excel tool offers three option on curtailment (from row 85)
 - No compensation
 - User defined compensation
 - > PPA tariff, i.e. full compensation
- Share of net AEP that is curtailed is an input
- The user defined compensation is an input

Over-/ underproduction

- This functionality is tied to the use of a time series of AEP rather than a fixed Pxx AEP
- Committed annual energy production determines over- and under production (from row 95)
 - Underproduction is penalized by a fixed penalty per unit of energy
 - Overproduction is paid a tariff that is potentially lower than the PPA tariff
 - Both options can be switched on and off using the tick boxes

Over-/underproduction	include	
	IIIciaac	
Committed AEP (GWh)		159
Penalty for underproduction (USD/MWh)	☐ FALSE	130
Tariff for overproduction (USD/MWh)	☐ FALSE	93

Capacity remuneration

- Capacity remuneration pays out a fixed amount per year per unit of capacity available at all times (from row 102)
 - Both the capacity remuneration and the penalty for shortfalls should be included and defined as input.
- It is possible to include annual variability of the capacity factor. If this is not chosen, the factor is assumed constant.

Capacity Credits		
Activate annual variability in capacity factor	☐ FALSE	
Comitted capacity factor (% of nominal capaci	ty)	31%
Capacity remuneration (USD/MW/year)	\Box FALSE	10,000
Penalty for shortfalls (USD/MW/year)	☐ FALSE	10,000
, , , , ,	_	

Late commissioning

- Late commissioning is a problem for the developer AND the grid (from row 109)
 - Delay is input in years
 - Penalty is input per unit of capacity per year

Late commissioning		
Delay in commissioning (years)	☐ FALSE	1
Late commisioning penalty (USD/year/MW)	☐ FALSE	100,000

Exercises Day 2

Feasibility

- > What is the internal rate of return (IRR) of your project?
- What happens to IRR when you:
 - Lower CAPEX?
 - Row 11-16 in the sheet "CAPEX & OPEX"
 - Lower OPEX?
 - > Row 20-25 in the sheet "CAPEX & OPEX"
 - > Pxx / higher uncertainty on energy production?
 - > Drop down menu, row 9 in the User Interface
 - > Higher PPA tariff?
 - > Row 64 User Interface
 - > Which options are you best in control of?
- How does a higher IRR affect the DSCR? (see the minimum Senior DSCR in the Main results box)

Key indicators	
PPA Price(USD/MWh)	447
NPV	2,181,781
Equity NPV	-7,495
IRR	8%
Equity IRR	12%
Simple WACC (before taxes)	8%
Compound WACC	8%
Minimum Senior DSCR	1.74
Minimum Junior DSCR	0.00
NPV GBI	0
NPV Investment subsidy	0
Break even (years)	10.5
LCOE (USD/MWh)	423.4

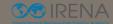
Debt service (Caribbean)

- Try including loan financing of DSRA (row 177)
 - How does it affect the NPV?
 - How does changing the contingency cash and interest of cash affect the NPV?

Cash reserves			
Interest of cash			2%
Contingency cash			270
Contingency cash			
Include loan financing of DSRA	V	TRUE	DSRA active
Estimate of DSRA needed	USD		1,509,287
			100%

Calibrating the model

- This is a key function in the model
 - > Select "Change:" PPA tariff (row 195)
 - > Select "To make:" IRR eq (row 198)
 - Set "Equal to:" the cost of equity set under financing (row 201)
- Click the button "Run Goalseek" to find the PPA tariff which provides the developer with the required return on equity
 - See the result in the top line of the Main Results table
- Change a setting, e.g. a PPA contract element
- Click the button again

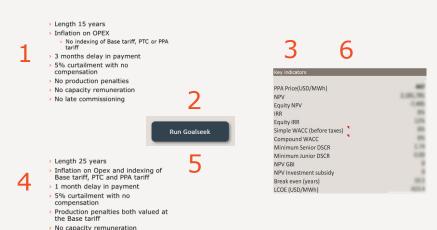


Scenario analysis

Contract setups

- > Length 15 years (row 59)
- Inflation on OPEX (from row 69)
 - > No indexing of Base tariff, PTC or PPA tariff
- > 3 months delay in payment (row 82)
- 5% curtailment with no compensation (from row 87)
- No production penalties (from row 97, remember to set the committed AEP relative to the net AEP in row 24)
- No capacity remuneration (from row 103)
- No late commissioning (from row 111)

- Length 25 years
- Inflation on Opex and indexing of Base tariff, PTC and PPA tariff
- > 1 month delay in payment
- > 5% curtailment with no compensation
- Production penalties both valued at the Base tariff
- No capacity remuneration
- No late commissioning



Compare the two contracts

- > Set up 1 contract
- > Find the PPA tariff using goal seek
- Note the PPA tariff
 - e.g. write it down or copy paste value to an empty cell
- Set up the other contract
- Find the PPA tariff using goal seek
- how do the PPA tariffs compare?

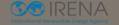
Summary:

No late commissioning

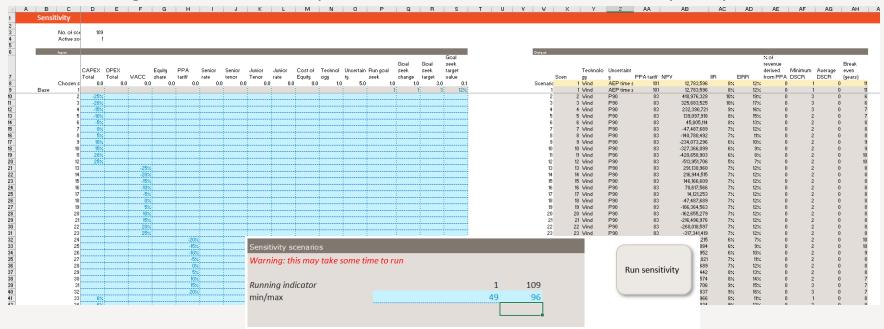
The second contract had a much lower PPA price. This was achieved only by changing the PPA settings.

Battery

- > Would a battery increase the feasibility of the project?
 - Add a battery and see how the financial KPIs change (row 18)
 - > Try out different sizes for the battery
 - What happens if you increase curtailment? (from row 86)
 - After increasing curtailment, try turning battery on and off and investigating impact on KPIs
- How does adding a battery change the PPA tariff (price)?
 - Use goal seek to find tariff

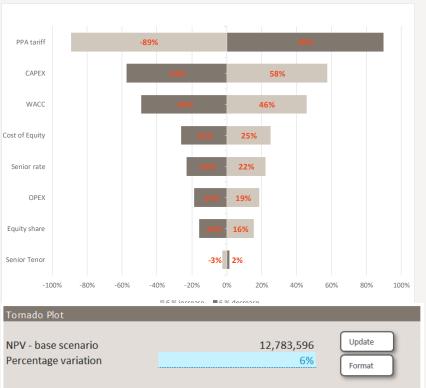


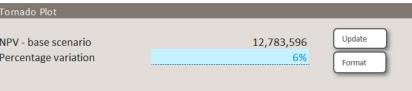
Sensitivity analysis using the model



Running sensitivities

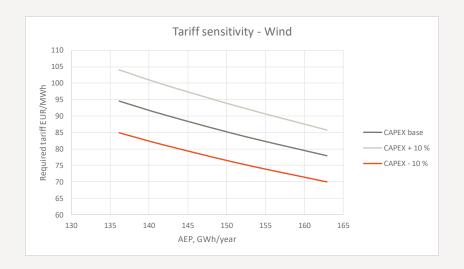
> The following slides introduces a predetermined set of standard sensitivity analyses





Tornado plot

- Predefined functionality
 - Classic tornado plot
 - x% variation in inputs leads to ?% increase/decrease in project NPV
- Indicates which parameters have the biggest impact on the results
- Press the update button
- Change the percentage change
- Try pressing the button again



Tariff sensitivity

- Changes inputs
 - CAPEX
 - > AEP
- Re-estimates the PPA tariff
- Shows how sensitive the expected PPA tariff is to variations in CAPEX and AEP
- > Define which sensitivity runs to run
 - Start at 49
 - > end at 96
- > Run sensitivities

