

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Pacific Regional Capacity Building Programme for Energy Management and Energy Audits

Day 2 : Tuesday 28th February 2023

27 February – 03 March 2023 Nadi, Fiji

Capacity Building		MEPSL		Waste Management	
Support budget for EE		Staff/Capacity retention		RE standards	
	Review of legislation			ıblic reness	

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Introduction to Energy Management and Energy Audit

ENERGY AND ENERGY MANAGEMENT

When work is done, energy is transferred from one form to another.

....Travelling in a car. Chemical energy (petrol store) transfers to mechanical energy (movement)

....Heating Water.

Chemical energy (gas store) transfers to thermal energy (heat)

....Using the Air Conditioner.

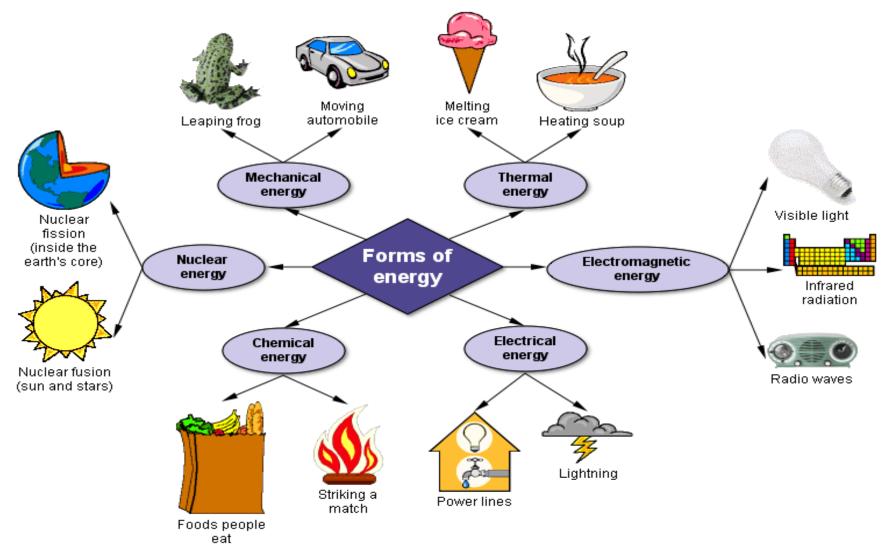
Electrical energy transfers to mechanical energy (moving air)

....Turning on the lights. Electrical energy transfers to light energy

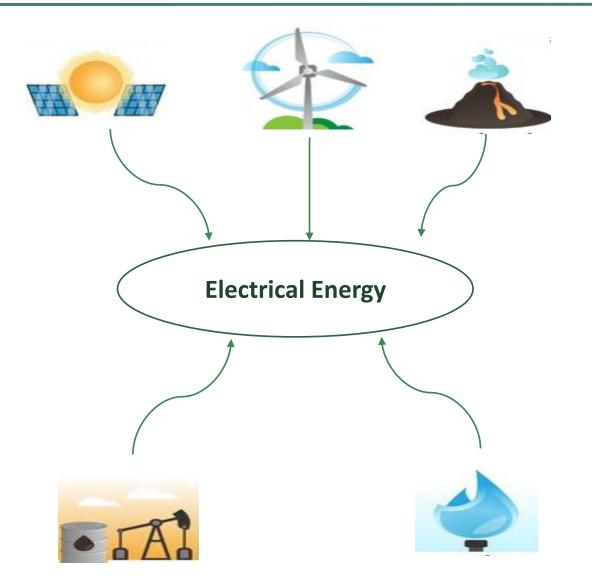
- **Energy** the ability/capacity to do work
- **Work** the transfer of energy. Work = Force x Distance. One Joule of energy (work) is required to move one Newton of force over one metre distance.

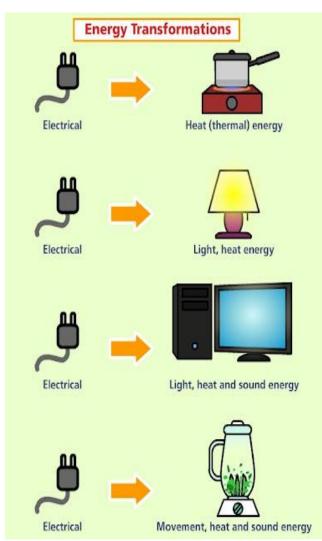
1 Joule = 1 newton x 1 meter

• *Power* – It is the rate at which energy is transferred.

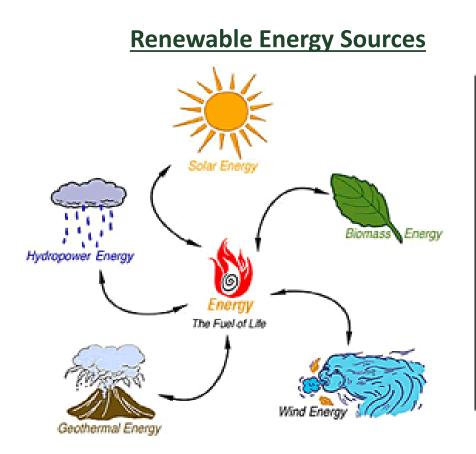

Power = energy / time (Joules per second or Watts, W)

• *Kilowatt (kW)* - A unit of measure of the amount of power needed to operate equipment, equivalent to one thousand (1,000) watts.

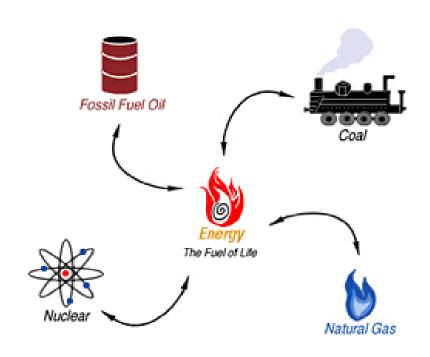

Energy = power x time (kWh)

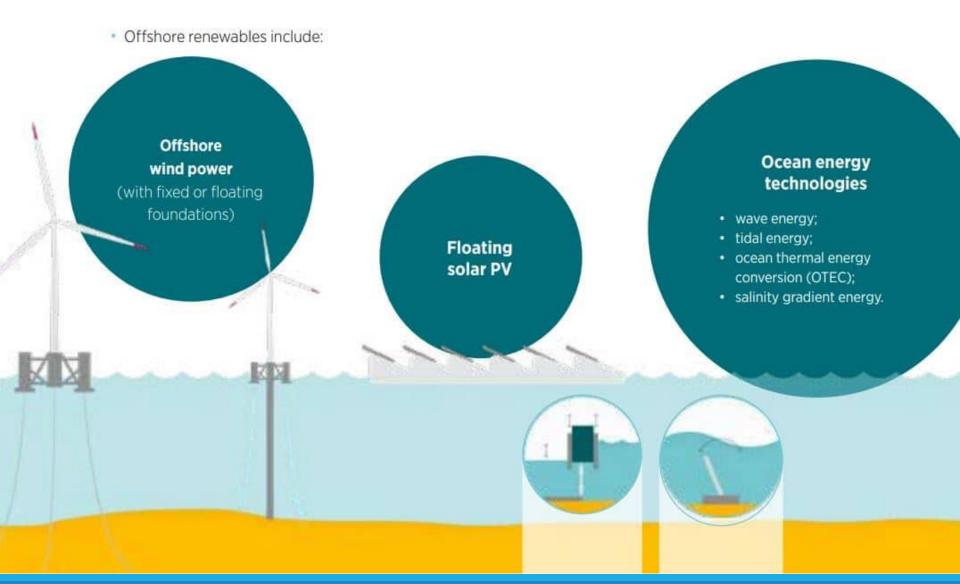

• *Kilowatt-Hour (kWh)* - A measure of electrical energy equivalent to power consumption of 1000 watts for 1 hour. It is the most commonly used unit of measure indicating the amount of electricity consumed over time (*what you get charged on*).

Different Forms of Energy



Electrical Energy and Transformations

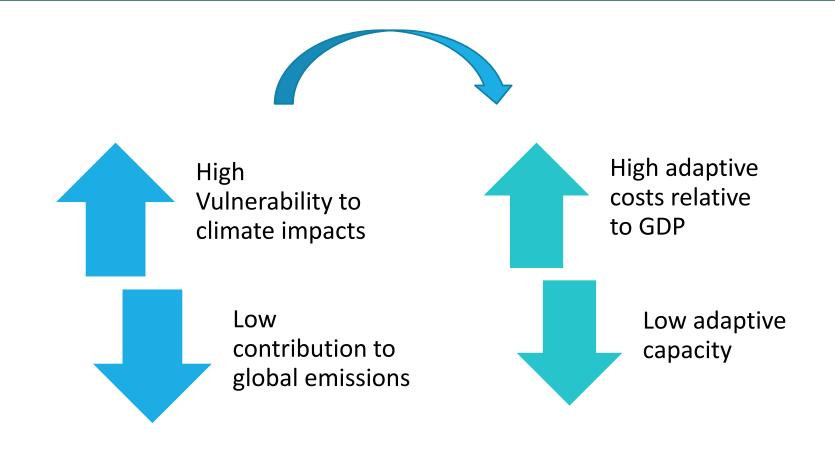




Sources of energy refer to - WHERE energy comes from.

Non-Renewable Energy Sources

Hydrogen


Hydrogen production methods GREY GREEN BLUE HYDROGEN **HYDROGEN HYDROGEN** Process Reforming or Electrolysis Reforming or gasification with carbon capture Energy Fossil fuels Fossil fuels Renewable electricity source Æ Estimated emissions 0.4-4.5^c from the production processa

Source: IRENA (2022) Geopolitics of the Energy Transformation: The Hydrogen Factor

DECARBONISING END-USE SECTORS GREEN HYDROGEN CERTIFICATION

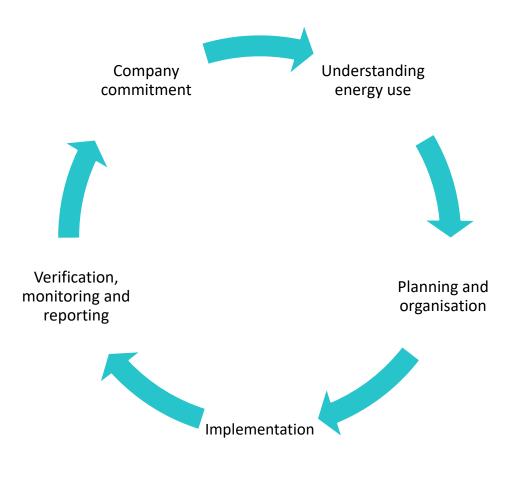
Why do SIDS need Energy Management?

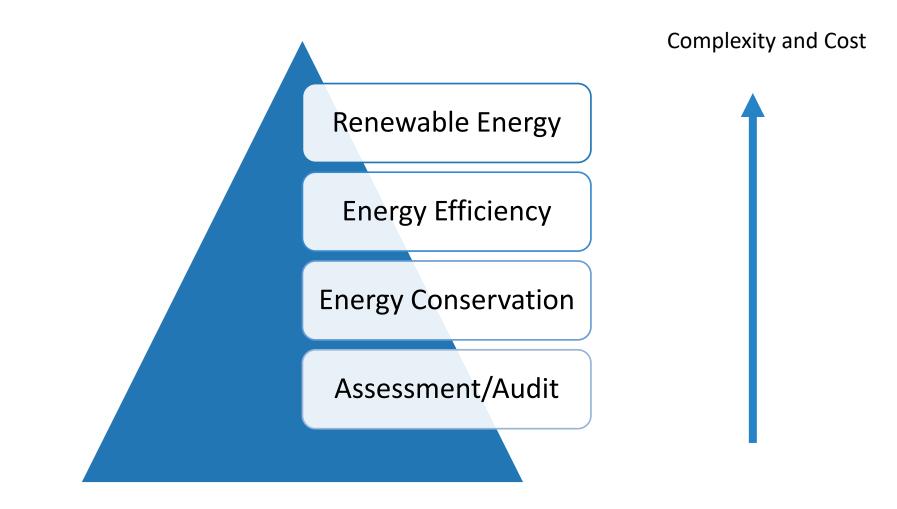
Benefits of Energy Management

Homes/Buildings/Industry

National and Regional

Global


- Reduced Energy Bills
- Increased comfort levels
- Increased productivity
- Reduced maintenance cost
- Increased profits


- Reduced fuel imports
- Resources to improve infrastructure
- Optimise the additional power demand
- Supports in meeting NDC commitments

- Reduced Greenhouse gas emissions
- Maintains a sustainable environment

Energy management is the proactive, organized, and systematic coordination of procurement, conversion, distribution, and use of energy to meet the requirements, taking into account environmental and economic objective.

An energy management(or monitoring) system (EMS) is an automation-based system that consists of energy data capturing tools and display devices to efficiently analyze the energy consumption for desired benefits

Similar goal : To reduce energy use

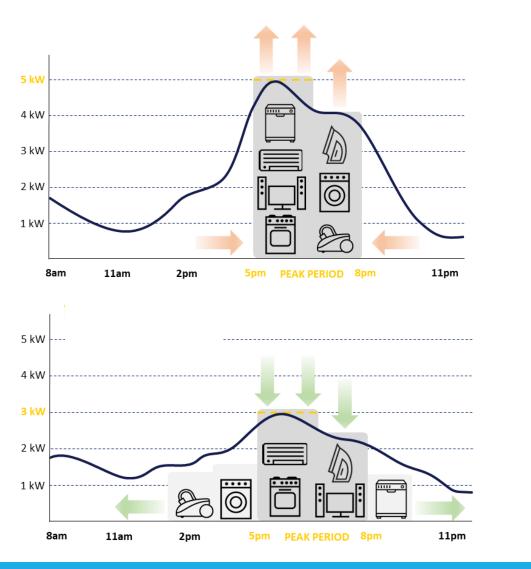
Energy Conservation

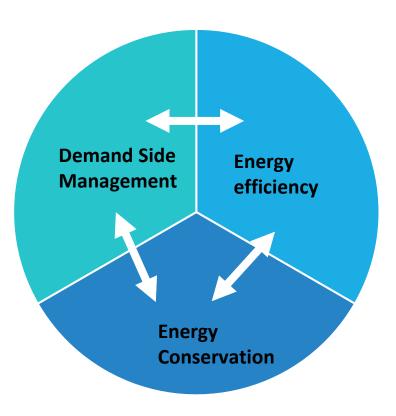
- Energy conservation is the decision and practice of using less energy.
- Focuses on the behavior of people.
- E.g. Opening a curtain for daylight instead of switching on the lights

Energy Efficiency

- Energy efficiency is using less energy to perform the same task
- Focuses on the equipment/ technology/ machinery being used.
- E.g. Switching out incandescent light bulbs or compact florescent light (CFLs) bulbs with light emitting diodes (LEDs)

Can you identify opportunities for energy conservation and energy efficiency in this conference room?


Can you notice any measures that have already been taken?


Can you identify opportunities for energy conservation and energy efficiency in this conference room?

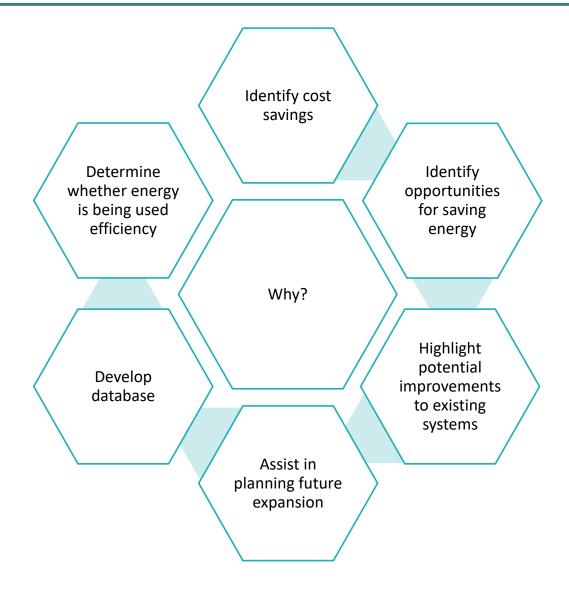
Can you notice any measures that have already been taken?

Energy Conservation	Energy Efficiency
Keep doors closed when going for coffee breaks	Dimmers
Unplug devices (stand by power)	Adjusting AC temperature
Using curtains	
Take off lights when no one is in the room	

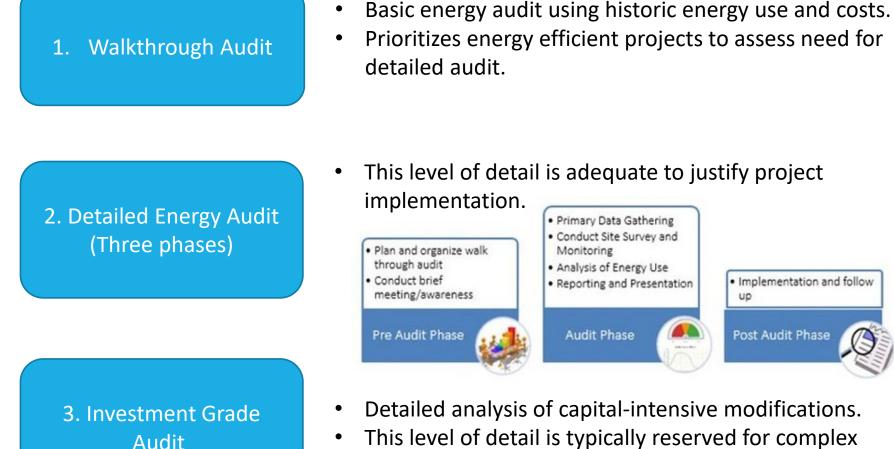
Energy Conservation, Energy Efficiency, Demand Side Management

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Introduction to Energy Management and Energy Audit

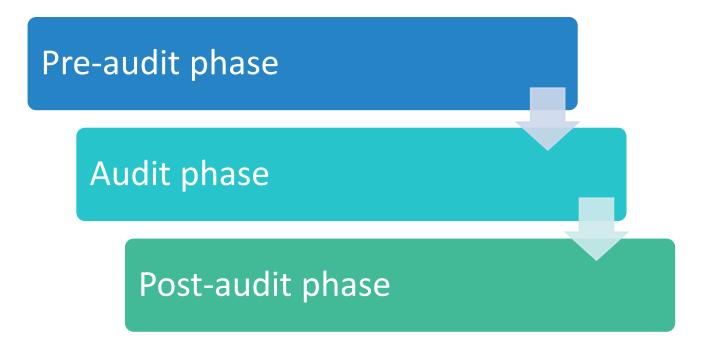

TYPES OF ENERGY AUDITS

The energy management process starts with an **energy audit** and is put into action with appropriate strategies.


An energy audit can be defined as an inspection or survey analysis of energy flows in a structure, in a process or in a system which helps in:

- ✓ Understanding **how energy is used** within the system or process, and where it is wasted
- ✓ Finding alternative measures to reduce energy losses and improve the overall performance
- Performing a cost-benefit analysis for highlighting which energy efficiency measures are best to implement

Advantages of an Energy Audit


Three Types of Energy Audits

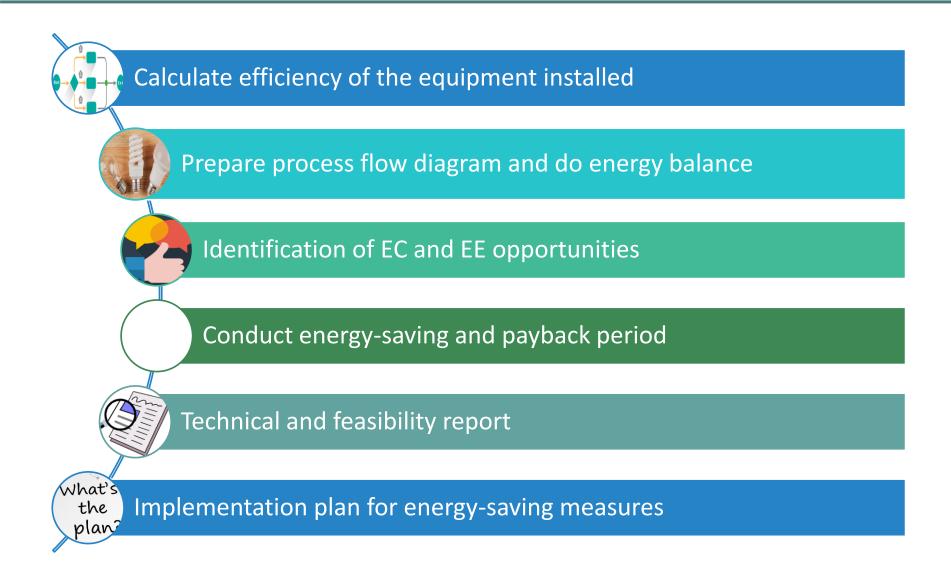
• This level of detail is typically reserved for complex commercial and industrial buildings.

- Also called a simple audit.
- It involves:
 - **One** day or one **half**-day visit to a plant.
 - Provides a quick overview of energy use patterns Based on observation and historical data collected.
 - Identifes **energy intensive** processes and equipment.
 - o Identifies energy inefficiency, if any
 - Estimates the scope for saving Findings will be a general comment based on energy best practices.
 - o Identifies the most likely areas for attention
 - Identifies immediate (no-/low-cost) improvements
 - Identifies areas for more **detailed study/ measurements**.

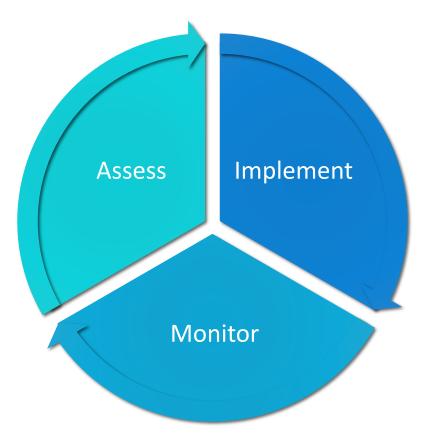
Detailed Energy Audit evaluates all systems and equipment which consume energy and the audit comprises a detailed study on energy savings and costs. It is carried out in 3 phases.

A pre-audit phase is the first phase or first step of a detailed energy audit. During this phase, the energy auditor intends to take the following measures:

Discussion with the site manager about the energy audit


Explain the meaning of the energy audit and data needed

Analyze the major area of energy consumption


Obtain the site drawings such as a single line diagram of the electrical circuit, building layout, HVAC system

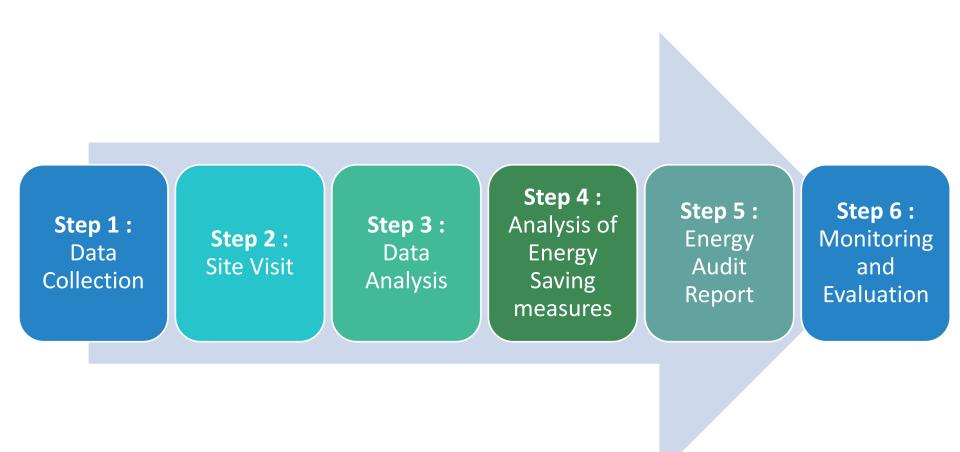
Energy audit team is finalized

Level 2 - Detailed Energy Audit - Audit Phase

Implement Energy Conservation and Energy Efficiency measures and monitor the performance

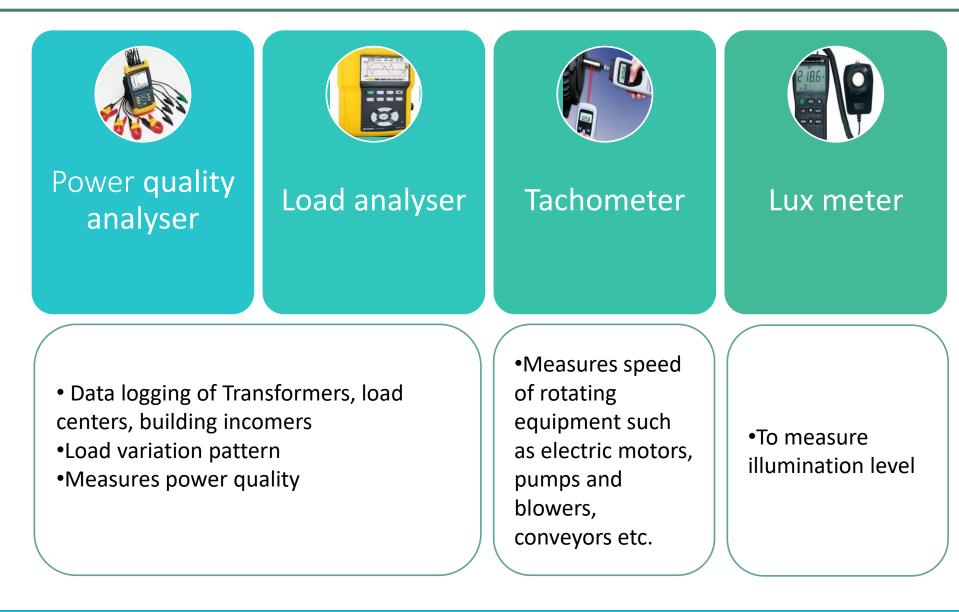
- It includes steps of both Level 1 & Level 2 energy audits.
- It provides detailed analysis of capital-intensive projects and provides in-depth financial analysis such as Net Present Value (NPV) and Internal Rate of Return method (IRR).

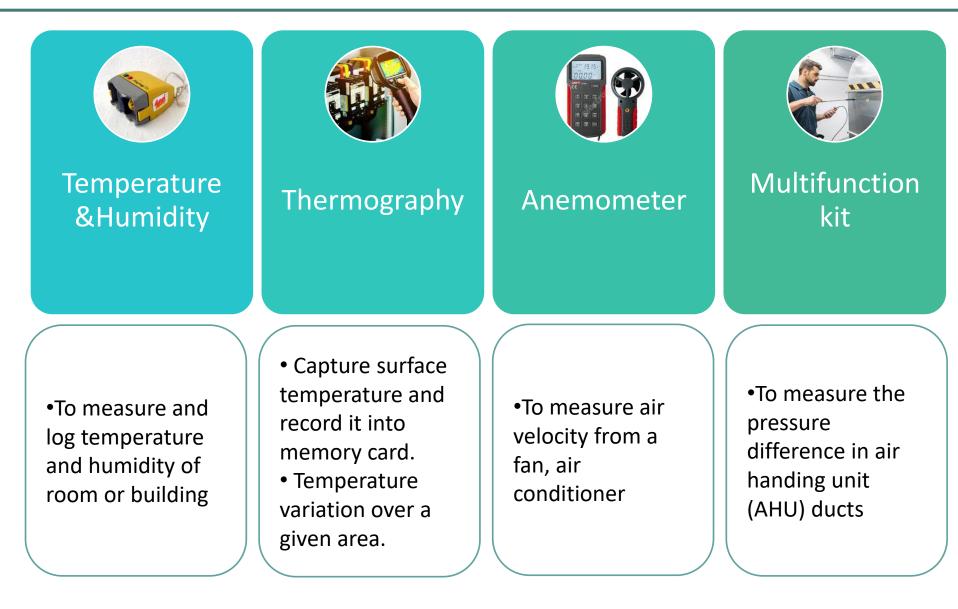
This type of audit recommends a **Guaranteed Saving Verification Plan** – Which includes energy saving measures along with financial analysis such as NPV & IRR

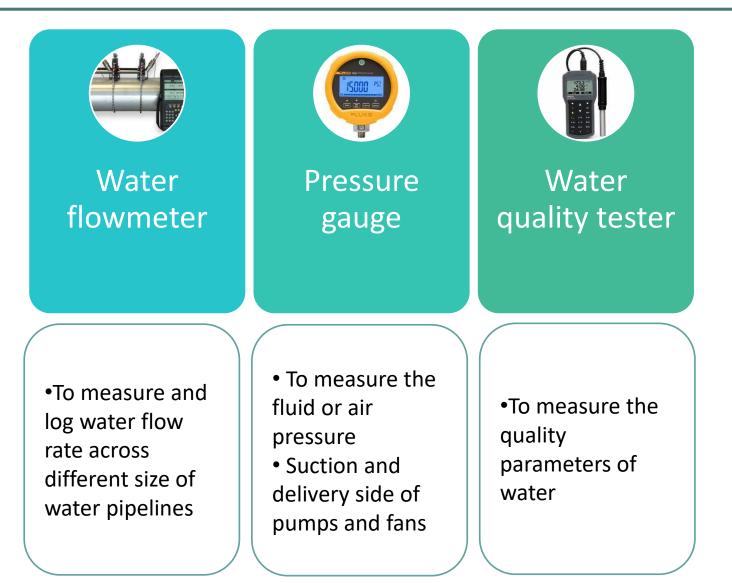


SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Introduction to Energy Management and Energy Audit


ENERGY AUDIT METHODOLOGY

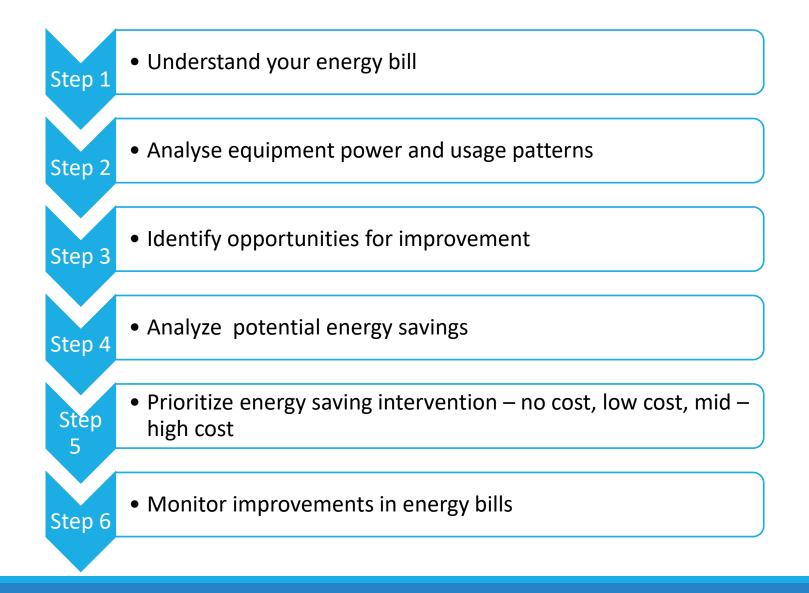

- Step 1 : Identify the energy intensive instruments or appliances
 - Measure & calculate energy consumption: To conserve energy, it is necessary to know where & how much energy is being consumed.
- Measurement devices play a vital role in an energy audit to characterize and quantify energy. These devices also provide a means to monitor equipment performance and check conditions.
- Various categories of portable energy audit measurement devices include:


Energy Audit Instruments - Electrical

Energy Audit Instruments - Thermal

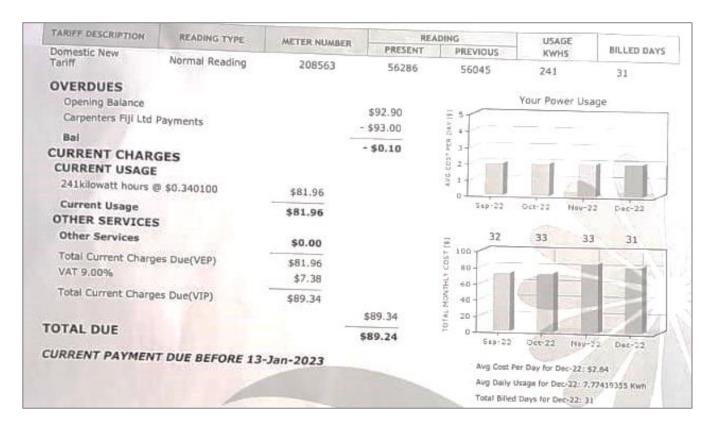
Energy Audit Instruments - Water

Coffee Break



SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

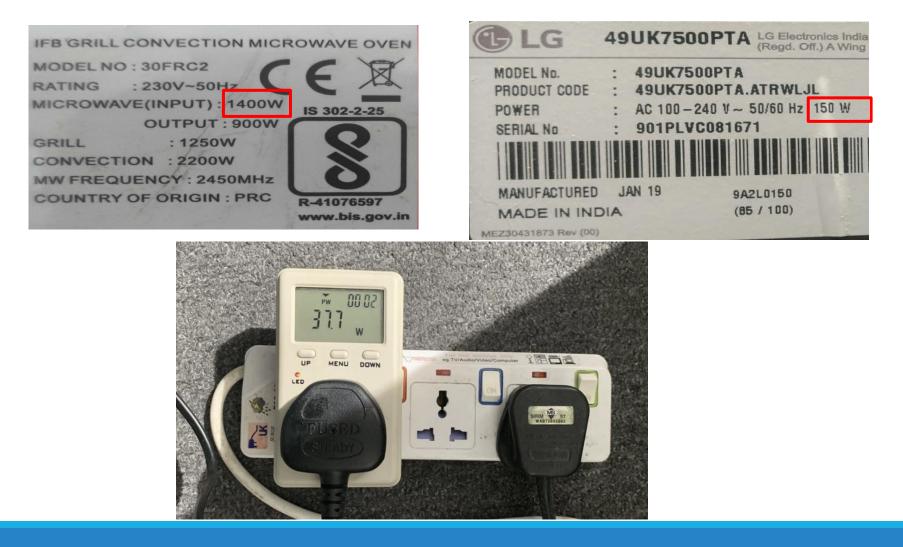
Practical Session


WALK THROUGH HOME ENERGY AUDIT

Steps involved for conducting a Home Energy Audit

1. Understand your electricity bill

- Record the electricity consumption (kWh) and electricity cost (cents /kwh)
- If available, collect bills for 1-2 years to understand trends e.g. pre-covid, post- covid



2. Analyze Equipment Power & Usage Patterns

- Make a list of all energy consuming equipment and their corresponding power rating.
 Power rating/ Rated input power can be found at the back of the appliance
 Power consumption readings can also be taken using a digital electric meter
- Record or estimate the usage pattern (daily, weekly, monthly)
- Note standby power, age of appliances/equipment
- Calculate energy consumption of appliances (kWh)
- Sum up the total kWh consumption of all appliances and compare the total with the consumption in the electricity bills.

Rated Input Power

The power of the appliance will be listed in Watts (W).

- Depends on "INPUT POWER" or "Active Power" of the appliance.
- Generally written on "Product Information Tag" and measured in Watt (W) or kilo
 Watt (kW)

1000 W = 1KW

INPUT POWER X TIME ELECTRIC ENERGY (kW) (hr) = (kWh)

1 Unit of Electric Energy Consumed = 1 kWh

It is the amount of active power or true power consumed in one hour

• Electricity in homes is mostly used for lighting, air conditioning, and electrical appliances like refrigerators and electronics like TVs and computers.

Exercise 1: Monthly Energy Consumption By Appliance

Energy Consumption Per Day (kWh/Day)	=	Number of Appliances X	Rated Input Power (W) ×	Operating Hour Per Day (hrs.)
			1000	
Energy Consumption Per Month (kWh/Month)	= 1	Total of the daily	energy consump	tion in one month

Date	Name	Quantity	Rated Input Power (W)	Operating Hour Per Day	Energy Consumption Per Day (kWh/Day)
1 Jan 2022					
2 Jan 2022					
3 Jan 2022					
-					
-					
31 Jan 2022					
Total Energy					

Energy Consumption Per Month By Water Pump (kWh/Month)

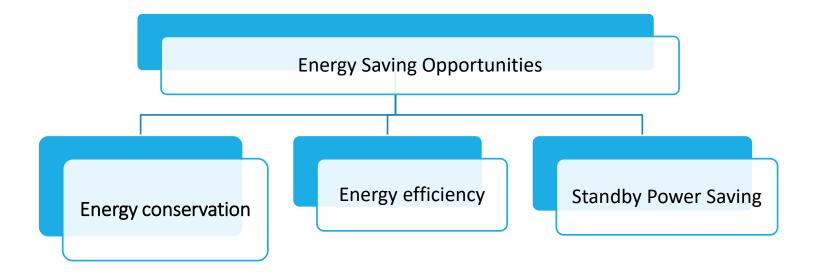
Date	Name	Quantity	Rated Input Power (kW)	Operating Hour Per Day	Energy Consumption Per Day (kWh/Day)
1 Jan 2022	Pump	1	0.37	1.50	0.56
2 Jan 2022	Pump	1	0.37	0.50	
3 Jan 2022	Pump	1	0.37	0.75	
-					
-					
31 Jan 2022	Pump	1	0.37	1.50	
Total Energy C (kWh/Month)	12.30				

Exercise 1: Monthly Energy Consumption By Appliance - ANSWERS

Energy Consumption Per Year (kWh/Year)

Date	Energy Consumption Per Month By water pump (kWh/Month)
January	12.30
February	10.39
March	8.59
April	11.37
May	12.38
June	10.59
July	11.37
August	12.59
September	10.52
October	11.37
November	9.39
December	11.59
Energy Consumption Per Year (kWh/Year)	132.13

Calculate the daily and annual energy consumption of each appliance.


Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306.6
Air conditioner	2	800	13		365	
Refrigerator	1	120	24		365	
Water Heater	1	3000	4		90	
Water Pump	1	370	1		365	

Energy Consumption Per Day (kWh/Day)	=	Number of Appliances	x		d Input er (W)	x	Operating Hour Per Day (Hrs.)
					1000		
Energy Consumption Per Year (kWh/Year)		Energy Consumption Per Day (kWh/Day)		x	Op Yea	erating Days in a ar	

Exercise 2: Annual Energy Consumption By Different Appliances - ANSWERS

Appliances	Number	Rated Watts (W)	Operating Hours Per Day	Daily Energy Consumption (kWh/Day)	Operating Days Per Year	Annual Energy Consumption (kWh/Year)
LED Lamp	3	28	10	0.84	365	306
Air conditioner	2	800	13	20.8	250	5200
Refrigerator	1	120	24	2.9	365	1058
Water Heater	1	3000	4	12.0	90	1080
Water Pump	1	370	1	0.37	365	135
Total Annual Energy Consumption, kWh						7773
Total Annual Electricity Cost, \$ (tariff at 34c/kWh)						2643

- ✓ 1. Understand your electricity bill
- ✓ 2. Analyze Equipment Power & Usage Patterns
- 3. Identify Opportunities for improvement

How can we conserve energy with our lighting?

- Turn off the lights when you leave a room
- Use dimmer switches to adjust the power a light fixture uses
- Install programmable switches to turn lights off at a preset time
- Place floor and table lamps in a corner or next to a mirror to reflect light into a room
- Use task lighting to suit the light levels to the activity e.g. reading lamp for study
- Regularly dust light fixtures so they generate the most light possible

How can we reduce the heat load of a room?

- By putting curtain on windows.
- Close door and windows.
- Arrest air leakage near door and windows.
- Avoid ironing of clothes in AC room.

Energy conservation measure - Refrigerator

- Do not open door frequently.
- Don't leave the fridge door open for longer than necessary, as cold air will escape.
- Do not overload the refrigerator.
- Avoid putting hot or warm food straight into the fridge.
- Cover liquids and wrap foods stored in the refrigerator. Uncovered foods release moisture and make the compressor work harder.
- Regularly defrost manual-defrost refrigerators and freezers; frost build-up increases the amount of energy needed to keep the motor running.
- Leave enough space between your refrigerator and the walls so that air can easily circulate around the refrigerator.
- Don't keep your refrigerator or freezer too cold. The rule of thumb is that you set the temperature of the fridge between 2.5 and 4.5 degrees Centigrade. The freezer chamber should be set at an ideal range of -15 to -17.5 degrees Centigrade.

Energy conservation measures

1. Electric Iron

- Select irons with automatic temperature cut-off.
- Use appropriate setting for ironing.
- Do not put more water on clothes while ironing.
- Do not iron wet clothes

2. Washing Machine

- Run washing machine only with full load.
- Use optimal quantity of water.
- Use timer to save energy.
- Use the correct amount of detergent.
- Prefer natural drying over electric dryers.

Energy Conservation Measures

3. Water Heater

- Switch off when not required.
- Reduce thermostat setting from 60° to 50° C.
- 4. Mixers
 - Dry grinding in food processors (mixers and grinders) takes longer time and as such consumes more energy than liquid grinding.

5. Microwave Oven

- Consumes 50 % less energy than conventional electric / gas stoves.
- Do not bake large food items.
- Don't open the oven door too often to check food condition as each opening leads to a temperature drop of 25° C.

Replace the conventional ceiling fan with energy efficient Brushless DC (BLDC)

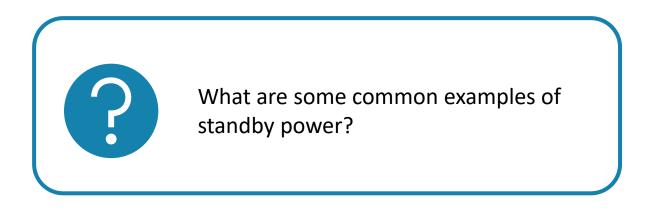
Fan Speed	BLDC Fan	Traditional Fan
1	6 W	16 W
2	10 W	27 W
3	14 W	45 W
4	19 W	55 W
5	28 W	75 W

- BLDC motor fans consume less power compared to the traditional ceiling fans.
- These fans come with a **remote control unit** thereby allowing you to switch on and off easily.
- These BLDC motor fans come with a **Timer and Sleep mode** that will enable you to set a specific time limit (number of hours) while sleeping.

Energy Efficiency Intervention – Lighting

Replace existing lights with LED

- LED lighting achieves energy savings of 30% to 90%.
- LED lamps work at a much lower temperature, reducing the risk of burns if touched.
- Maintenance-free and easy to install.
- Delivering better lighting quality and visibility.
- Tremendous design flexibility.
- Smart connectivity features.
- Lasting for many years (even decades).



LUMENS	INCANDESCENT WATTAGE	LED WATTAGE
2,600 lm	150 W	25-28 W
1,600 lm	100 W	16-20 W
1,100 lm	75 W	9-13 W
800 lm	60 W	8-12 W
450 lm	40 W	6-9 W

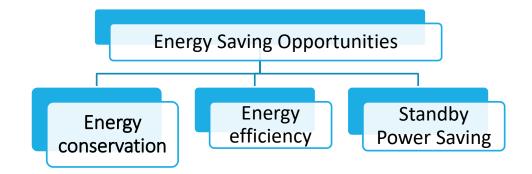
TYPE OF LIGHT SOURCE	AVERAGE LIFESPAN (HOURS)
Incandescent bulb	1,000 - 2,500
CFL bulbs	6,000 - 15,000
LED bulbs	25,000 - 50,000 (even more)

- Electric power consumed by products when they are switched off or in a standby mode is known as standby power/ vampire power.
- Standby power allows electronics to turn on quickly, but means that they are constantly drawing some power from the electrical grid.

Stand-By Power

Examples include:

- Set top box, cable box, TV
- Household items with a clock E.g. microwave
- Water pumps
- Chargers
- Smart appliances
- Cordless phones
- Computer monitors
- Printers


Appliance	Stand-by power (Watts)
DVD Player	10
Microwave	5
Desktop computer	9

Appliance	Stand-by power (Watts)
Cable Set-up box	10
Audio system	24
Television	7

- Use a Power Strip with Switches. You can use a power strip with on/off switches
 to plug in your appliances. Surge protector power strips typically have such
 switches and help protect your appliances and electronics If you plug all of your
 products into a power strip and flip off the power strip when these items are not
 in use, they are *truly* off.
- Unplug Your Products. Another sure way to reduce your standby power load is to just unplug your products. Now, there are some products that you will want to keep plugged in, such as the digital alarm clock in your bedroom or the refrigerator. But there are many appliances that you may not need to have plugged in, such as a toaster oven.
- Consider using ENERGY STAR[®] products. Many <u>ENERGY STAR products</u> are energy efficient and have lower standby power than comparable non-ENERGY STAR products.

Home Energy Audit

- ✓ 1. Understand your electricity bill
- ✓ 2. Analyze Equipment Power & Usage Patterns
- ✓ 3. Identify Opportunities for improvement

4. Analyse potential energy savings and cost savings

Annual Energy Saving (kWh/Year) =	Annual Energy Consumption in Present Condition	-	Annual Energy Consumption after implementing energy saving measure
Annual Cost Saving (\$/Ye	ear) Annual Energy Saving = (kWh/Year)	x	Per Unit Electricity Cost (XX \$/kWh)

Calculate the annual energy and cost savings by **switching OFF** fans and lights when not in use

Appliances	Number		Operating Hours Per Day (Hr)	Daily Unutilized Hours	Annual Operating Days	Annual Energy Saving (kWh)	
Ceiling Fan	4	75	10	1	300		
Tube Light	8	28	12	2	300		
	Total Annual Energy Saving (kWh)						

Calculate the annual energy and cost savings by **switching OFF** fans and lights when not in use

Appliances	Number		Operating Hours Per Day (Hr)	Daily Unutilized Hours	Annual Operating Days	Annual Energy Saving (kWh)
Ceiling Fan	4	75	10	1	300	90
Tube Light	8	28	12	2	300	134
	224					
	175					
Investment (\$)						Nil
	Immediate					

Exercise 4: Energy and cost savings (EE measure)

Calculate savings and payback period to replace the conventional FTL tube light with LED tube lights.

Note 1: Assume per unit electricity cost is 0.78 \$/kWh

Note 2: Assume 365 operating days in a year

Note 3: Cost of one 18W LED tube light: \$30

Payback Period = Investment (\$) Annual cost saving (\$)

Appliances	Number of Appliances	Operating Hours Per Day (Hr)	Rated Watts (W)	Daily Energy Consumption (kWh)
FTL Tube Light	8	12	28	
LED Tube Light	8	12	18	
	Daily En			
	Annual Ei			
	Annua			
	Inv			
	Pay			

Calculate savings and payback period to replace the conventional FTL tube light with LED tube lights.

Appliances	Number of Appliances	Operating Hours Per Day (Hr)	Rated Watts (W)	Daily Energy Consumption (kWh)
FTL Tube Light	8	12	28	2.69
LED Tube Light	8	12	18	1.73
	Daily En	0.96		
	Annual Ei	350		
		l Cost Saving (\$)		273
	Inv	240		
	Рау	0.88		

- ✓ 1. Understand your electricity bill
- ✓ 2. Analyze Equipment Power & Usage Patterns
- ✓ 3. Identify Opportunities for improvement
- ✓ 4. Analyze potential energy savings and cost savings

5. Prioritize energy saving interventions – no cost, low cost, mid – high cost

5. Prioritize energy saving interventions – no cost, low cost, mid – high cost

No cost	Low cost	Mid-high cost
Adjust AC temperature to 24deg	Replacing incandescent lights with LED	Installing a layer of roof insulation greatly reduces the heat transmittance from
Close all windows and doors when the AC is running	Seal leaky edges of windows to avoid heat from coming	the roof directly into the house
Ensure AC units are serviced and cleaned, avoid dusty air	into cool spaces for air- conditioned homes	Installing motion and daylight sensors which
filters	Introduce more trees and shrubs surrounding the	trigger lights to turn on and off
Use daylight instead of electric lighting	perimeter of your home to reduce heat gain and prevent long AC run time	Smart home systems such as energy monitoring and smart
Turning off lights when not in use		metering systems

Potential scenario: A home has both a ceiling fan and air conditioning unit. How should we prioritize use of these appliances?

Case 1: Turn the fan off and set AC to 21 degrees C.Case 2: Turn ceiling fan on and set AC to 27 degrees C.

Exercise 5: Calculate the daily and annual cost savings through setting AC and fan at case 1 and case 2.

Note 1: Consider per unit electricity cost is 0.78 \$/kWh **Note 2:** Consider 300 operating days in a year

	CASE - 1					
Appliance	Status	Daily Energy Used (kWh/Day)	Daily Cost of Using Energy (\$)			
Fan	OFF	0				
AC	21ºC	11.5				
	٦	ΓΟΤΑL (\$)				

	CASE - 2						
Appliance	Status	Daily Cost of Using Energy (\$)					
Fan	ON	0.75					
AC	27ºC	9.00					
	٦	ΓΟΤΑL (\$)					

- Daily Cost Saving (\$) -
- Annual Cost Saving (\$)

CASE - 1					
Appliance	Status	Daily Energy Used (kWh/Day)	Daily Cost of Using Energy (\$)		
Fan	OFF	0	0		
AC	21ºC	11.5	8.97		
	1	8.97			

	CASE - 2					
Appliance	Status	Total Energy Used (kWh/Day)	Daily Cost of Using Energy (\$)			
Fan	ON	0.75	0.59			
AC	27°C	9.00	7.02			
	٦	ΓΟΤΑL (\$)	7.61			

- Daily Cost Saving (\$) 1.37
- Annual Cost Saving (\$) 409.5

- ✓ 1. Understand your electricity bill
- ✓ 2. Analyze Equipment Power & Usage Patterns
- ✓ 3. Identify Opportunities for improvement
- ✓ 4. Analyze potential energy savings and cost savings
- ✓ 5. Prioritize energy saving interventions no cost, low cost, mid high cost

6. Monitor improvements in energy bills

- Track improvements in energy bills every month
- Analyze the reductions to help you keep track of the impact that has resulted from every effort
- Revisit the energy reduction plan and revise it from time to time based on changes to your lifestyle and additions to your home appliance list

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Minimum Energy Performance Standards & Energy Efficiency Labelling

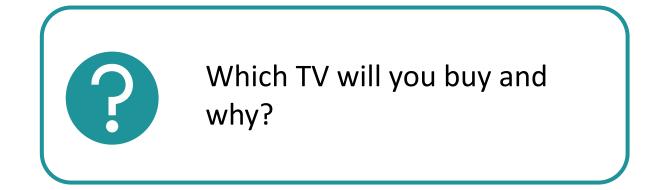
Lunch

What are Minimum Energy Performance Standards?

- MEPS are the minimum energy efficiency levels set by law for products sold in a particular country. Both energy labelling and MEPS require the use of particular test procedures that can be repeated in a laboratory.
- For example a fridge has to keep the temperatures inside its compartments within limits that are safe for food storage, and to operate in a specified ambient temperature while using less than a specified amount of electricity
- Energy labelling and MEPS for appliances are used in over 80 countries around the world to reduce energy use and greenhouse gas emission. Pacific Island countries and territories risked being left behind to become a dumping ground for inefficient appliances, so in 2012 the SPC started a project to help Pacific Island countries set up their own energy labeling and MEPS programmes. The Pacific Appliance Labelling and Standards (PALS) Programme is part of SPC's approach to increasing sustainable economic development through improved energy efficiency.

What is an Energy Label?

- An Energy label gives information about the energy efficiency of a product.
- Endorsement labels, such as the ENERGY STAR label, provide a 'seal of approval' to inform prospective purchasers that the product is highly energy efficient for its class. These products usually exceed minimum performance standards by a substantial amount.
- **Comparison labels** allow consumers to compare the energy consumption of similar products and factor lifetime running cost into their purchasing decision.


Reading the Energy Rating Label

- 1. The more stars a product has, the more energy efficient it is.
- 2. The energy consumption figure shows an estimate of how much energy the appliance uses each year.
- To estimate how much an electrical appliance with a star rating will cost to run each year, multiply the number of kilowatt hours (kWh) a year (the number on the Energy Rating Label) by your electricity rate on your electricity bill

Purchasing Decision – 55 Inch Television

	Option A	Option B	
Number of Stars	3	7	
Energy consumption	520 kWh/ year	213 kWh / year	
Running costs for 10 years			Assume electricity tariff of 0.69c/kWh
Cost of TV	\$2000	\$2800	

Purchasing Decision – 55 Inch Television

	Option A	Option B	
Number of Stars	3	7	
Energy consumption	520 kWh/ year	213 kWh / year	
Running costs for 10 years	\$3588	\$1469	Assume electricity tariff of 0.69c/kWh
Cost of TV	\$2000	\$2800	

Note:

- 1. The Products you are comparing need to be of similar size and features
- 2. The kWh figure is based on assumptions about usage. The actual energy consumption is based on how you use the appliance. E.g. falling asleep while watching TV

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

Implementing Energy Labelling and MEPS

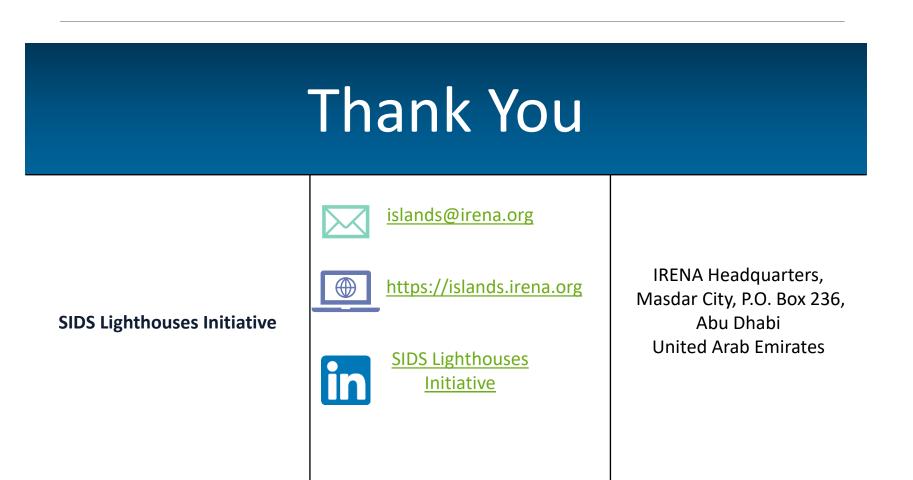
BEST PRACTICES AND LESSONS LEARNED FROM FIJI, VANUATU, SPC

Coffee Break

SE4ALL Centre of Excellence to Promote Sustainable Energy Markets, Industries and Innovation

National Residential Energy Efficiency Programmes

HIGHLIGHTS FROM FEDERATED STATES OF MICRONESIA, NIUE


Interactive Session

Energy

- Electricity, fuels, steam, heat, compressed air and other similar media
- The various types of energy, including renewable, which can be purchased, stored, treated, used in an equipment or in a process, or recovered.

Energy consumption - Quantity of energy consumed.

Energy use- Application of energy

Energy savings – refers to an amount of saved energy determined by measuring and/or estimating consumption before and after implementation of an energy efficiency improvement measure, whilst ensuring normalisation for external conditions that affect energy consumption

Energy intensity is a measure of the energy inefficiency of an economy. It is calculated as units of energy per unit of GDP

Energy Intensive Process

 An energy use that accounts for substantial energy consumption and/or offers considerable potential for energy performance improvement. Preliminary Report - Energy Audit of the Ministry of Public Works & Utilities Building December 2011 (Kiribati)

Energy Audit Report: Ministry of Education, 2013 (Republic of the Marshall Islands)